
Smart Contract Audit Report
for
Ankr

Audit Number: 202203091900

Project Name: Ankr

Deployment Platform: Ethereum, BNB Chain, Polygon Chain etc.

Project Contract Address:

Audit Start Date: 2022.02.16

Audit Completion Date: 2022.03.09

Audit Team: Beosin Technology Co. Ltd.

Contract Name Hash(SHA256)

BridgeRouter.sol 600814254edc5a7eb20b4bd3e0e3d2aeb145990e32350a49f5e221f872124ec8

CrossChainBridge.sol 06aa7f7fff23b21758e3e7ac67f6c3f6d7f9f3370661e6ca7138766446f86755

InternetBond.sol 42678df1203c0723ffe246b3cc036dd794d2e0b78f960eafc1e3c3b0cb04e240

InternetBondProxy.sol 112649c106b937657227191a4fc7b559364721f410908a14b6d2c23af31f61a5

InternetBondRatioFeed.sol 2582e148155d6cb5196fa6f578c804964e2bccc91da2b97f3b9040d198983bd5

SimpleToken.sol b21a2614caeae2eea534a4aca87df5127b7b057d194993d01564ddd3b71b24d1

SimpleTokenProxy.sol d495e84b6f6c409a2dac3a587c8c514395209228954555b73a0109003e0cb381

CallDataRLPReader.sol 8c29613da2ac1f843fa58c105e24a4da13c0e62b973a87412c74577d4493d4d6

EthereumVerifier.sol 4571177b308a052116086d778eb7e1e7a49a3ebd08c2cf85e3b4e1676f1dca1e

ProofParser.sol dfb87255aa6b3f40d11a09f1d9aa9969f52e22b01cf3b83f9279264b9207b5d9

Utils.sol eb02eb8146b1f15581f24648594995a484266c8f878467e131d8498a2b42f7ab

Audit Results Overview

Beosin Technology has used several methods including Formal Verification, Static Analysis, Typical Case

Testing and Manual Review to audit three major aspects of Ankr project, including Coding Conventions,

General Vulnerability and Business Security. After auditing, the Ankr project was found to have 2

Critical-risks, 2 Medium-risks, 1 Low-risk and 6 Info items. The following is the detailed audit

information for this project.

Index Risk items Risk level Status

CrossChainBridge-1 The deposit function lacks a judgment on the

fromToken address

Critical Fixed

CrossChainBridge-2 The withdraw function is improperly designed Critical Fixed

CrossChainBridge-3 The _depositErc20 function is improperly

designed

Medium Fixed

CrossChainBridge-4 Missing function of _nativeMetaData function Low Fixed

CrossChainBridge-5 Event triggering and zero address checking are

not performed in some functions in the

CrossChainBridge contract

Info Fixed

CrossChainBridge-6 Error message exception of require

in_peggedDestinationErc20Token and

_peggedDestinationErc20Bond functions

Info Fixed

CrossChainBridge-7 Unused pause and unpause functions Info Fixed

CrossChainBridge-8 Redundant code Info Fixed

InternetBond-1 Design flaws of increaseAllowance and

decreaseAllowance functions

Medium Fixed

InternetBond-2 The algorithms used in the _sharesToBonds

and _bondsToShares functions are different

Info Acknowledged

InternetBondRatioFeed-1 The addOperator function does not perform

event triggering and zero address checking

Info Fixed

Table 1 – Key Audit Findings

Risk description:

 Item InternetBond-2 is not fixed and may cause event trigger errors.

Findings

[CrossChainBridge-1 Critical] The deposit function lacks a judgment on the fromToken

address

Description: The contract provides the deposit function for deposit tokens. In the deposit function, the

validity of the fromToken input by the caller is not judged, when cross-chain is performed from the Peg token

on the A chain to the Peg token on the B chain through the CrossChainBridge contract, the attacker can

exploit malicious fromToken to forge, so as to mint the correct Peg token on the B chain, and then use the Peg

token on the B chain to cross-chain into the origin token on the C chain.

Figure 1 source code of deposit function

Figure 2 source code of _depositPegged function

Figure 3 source code of _peggedDestinationErc20Token&_peggedDestinationErc20Bond functions (Unfixed)

Fix recommendations: It is recommended to judge the legitimacy of the fromToken input by the user.

Status: Fixed.

Figure 4 source code of _peggedDestinationErc20Token&_peggedDestinationErc20Bond functions (Fixed)

[CrossChainBridge-2 Critical] The withdraw function is improperly designed

Description: The withdraw function in the CrossChainBridge contract lacks a determination of the

state.chainId in the event, which will lead to a double-spending attack.

Figure 5 source code of withdraw function (Unfixed)

Fix recommendations: It is recommended to judge state.chainId.

Status: Fixed.

Figure 6 source code of withdraw function (Fixed)

[CrossChainBridge-3 Medium] The _depositErc20 function is improperly designed

Description: In order to avoid adding fee-on-transfer tokens in the _depositErc20 function, the sender address

is incorrectly used to judge whether the fromToken is a fee-on-transfer token based on the balance before and

after the transfer. Here, it should be judged by the balance before and after the transfer of the receiving

address to determine whether fromToken is fee-on-transfer token.

Figure 7 source code of _depositErc20 function (Unfixed)

Fix recommendations: It is recommended to replace fromAddress with address(this) and modify the

corresponding logic.

Status: Fixed.

Figure 8 source code of _depositErc20 function (Fixed)

[CrossChainBridge-4 Low] Missing function of _nativeMetaData function

Description: The __CrossChainBridge_init function in the CrossChainBridge contract determines

"nativeAddress == ADDRESS_MATIC", while in the _nativeMetaData function there is no "fromToken ==

ADDRESS_MATIC" selection.

Figure 9 source code of __CrossChainBridge_init function

Figure 10 source code of _nativeMetaData function

Fix recommendations: It is recommended to increase the option of "fromToken == ADDRESS_MATIC" in

the _nativeMetaData function.

Status: Fixed. Project party’s description: In previous revision of smart contract they used to track allowed

"native addresses" in crosschain bridge contract. They made an observation that they do not need to register

"native addresses" for all chains in each bridge contract. It's sufficient for each bridge to only know it's own

"native address". They made changes to calculate this native address (as well as all the other fileds of native

asset Metadata structure) right in the contract initializer.

Figure 11 source code of __CrossChainBridge_init function

[CrossChainBridge-5 Info] Event triggering and zero address checking are not performed in

some functions in the CrossChainBridge contract

Description: The changeConsensus, changeRouter, setTokenFactory and setBondFactory functions in the

CrossChainBridge contract lack zero address checking and event triggering.

Figure 12 source code of changeConsensus&changeRouter functions (Unfixed)

Figure 13 source code of setTokenFactory&setBondFactory functions (Unfixed)

Fix recommendations: It is recommended to add event triggering and zero address checking.

Status: Fixed.

Figure 14 source code of changeConsensus&changeRouter functions (Fixed)

Figure 15 source code of setTokenFactory&setBondFactory functions (Fixed)

[CrossChainBridge-6 Info] Error message exception of require

in_peggedDestinationErc20Token and _peggedDestinationErc20Bond functions

Description: There is an error message exception of require in _peggedDestinationErc20Token and

_peggedDestinationErc20Bond functions of CrossChainBridge contract. The require checks if the fromToken

address is a pegged Tokens contract or not. When it is not a pegged Tokens contract, the error message is

incorrect.

Figure 16 source code of _peggedDestinationErc20Token&_peggedDestinationErc20Bond functions (Unfixed)

Fix recommendations: It is recommended to change the error message to 'non-pegged contract not supported'.

Status: Fixed.

Figure 17 source code of _peggedDestinationErc20Token&_peggedDestinationErc20Bond functions (Fixed)

[CrossChainBridge-7 Info] Unused pause and unpause functions

Description: Pause and unpause functions are not used in CrossChainBridge contracts.

Figure 18 source code of pause and unpause functions

Fix recommendations: It is recommended to add whenNotPaused modifier to the relevant function.

Status: Fixed.

Figure 19 source code of related function

[CrossChainBridge-8 Info] Redundant code

Description: The withdrawNotarized function in the CrossChainBridge contract has no practical significance

and is redundant code.

Figure 20 source code of withdrawNotarized function

Fix recommendations: It is recommended to remove redundant code.

Status: Fixed.

[InternetBond-1 Medium] Design flaws of increaseAllowance and decreaseAllowance functions

Description: In the increaseAllowance and decreaseAllowance functions of the InternetBond contract, the

value of amount is not converted to shares, which will lead to an error in the caller authorization than the

actual authorization.

Figure 21 source code of increaseAllowance and decreaseAllowance functions (Unfixed)

Fix recommendations: It is recommended to convert the value of amount to shares.

Status: Fixed.

Figure 22 source code of increaseAllowance and decreaseAllowance functions (Fixed)

[InternetBond-2 Info] The algorithms used in the _sharesToBonds and _bondsToShares

functions are different

Description: In the _sharesToBonds and _bondsToShares functions of the InternetBond contract, different

algorithms are used. After testing, the error of the two algorithms is not more than 1, and the event may trigger

an error when the transferFrom function is called to transfer funds.

Figure 23 source code of _sharesToBonds and _bondsToShares functions

Figure 24 source code of transferFrom function

Fix recommendations: It is recommended to use the same algorithm.

Status: Acknowledged.

[InternetBondRatioFeed-1 Info] The addOperator function does not perform event triggering

and zero address checking

Description: The addOperator function in the InternetBondRatioFeed contract does not perform event

triggering and zero address checking.

Figure 25 source code of addOperator function (Unfixed)

Fix recommendations: It is recommended to add event triggering and zero address checking to the

addOperator function.

Status: Fixed.

Figure 26 source code of addOperator function (Fixed)

Other Audit Items Descriptions

1. Other audit recommendations

 In the SimpleToken and InternetBond contracts, beware that when the user calls the approve function to

modify the authorization value, it may cause multiple authorizations. Using function 'increaseAllowance'

and 'decreaseAllowance' to alter allowance is recommended.

 Note that offline cross-chain scripts are not included in the scope of this audit, so the security of the entire

cross-chain project cannot be guaranteed.

2. Description from the project party

 Proof notarization is done by Ankr protocol which uses threshold ECDSA signatures with private key

shares distributed among protocol members. That’s why from blockchain perspective it looks like single

address. However private key from this address does not exist anywhere in one party hands so essentially

consensusAddress address is already multisig.

 Following roadmap is suggested for bridge owner. First deploy: owner is private key held in cold storage,

after some time ownership will be renounced in favor of Ankr governance contract, when supported

ownership might be passed to Ankr protocol key.

 Don’t care about ratio at all and sync it when one of cross chain event happen,It's very, very cheap but for

tokens like aETHb balance won’t update automatically every block or every day, some lags might happen

(or we can trigger dummy cross chain operation just to sync ratio).Use their backend services to

distribute ratio to all chains using ratio feeds with batch send. It won’t be very expensive to distribute

ratio for all chains since they do it in a batch transaction, but they still need to send all ratios to all chains

(it requires almost N^2 data to be sent). Since ratio feeds can be injected directly in Internet Bond token

template and cross chain contract its not very complicated to integrate it.

Appendix 1 Vulnerability Severity Level and Status Description

 Vulnerability Severity Level

Vulnerability Level Description Example

Critical Vulnerabilities that lead to the complete

destruction of the project and cannot be

recovered. It is strongly recommended to fix.

Malicious tampering of core

contract privileges and theft of

contract assets.

High Vulnerabilities that lead to major abnormalities

in the operation of the contract due to contract

operation errors. It is strongly recommended to

fix.

Unstandardized docking of the

USDT interface, causing the

user's assets to be unable to

withdraw.

Medium Vulnerabilities that cause the contract operation

result to be inconsistent with the design but will

not harm the core business. It is recommended to

fix.

The rewards that users received

do not match expectations.

Low Vulnerabilities that have no impact on the

operation of the contract, but there are potential

security risks, which may affect other functions.

The project party needs to confirm and

determine whether the fix is needed according to

the business scenario as appropriate.

Inaccurate annual interest rate

data queries.

Info There is no impact on the normal operation of

the contract, but improvements are still

recommended to comply with widely accepted

common project specifications.

It is needed to trigger

corresponding events after

modifying the core configuration.

 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the issue.

Acknowledged The project party confirms and chooses to ignore the issue.

Appendix 2 Description of Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator
(PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

3 Business Security
Business Logics

Business Implementations

1. Coding Conventions

1.1. Compiler Version Security

The old version of the compiler may cause various known security issues. Developers are advised to specify

the contract code to use the latest compiler version and eliminate the compiler alerts.

1.2. Deprecated Items

The Solidity smart contract development language is in rapid iteration. Some keywords have been deprecated

by newer versions of the compiler, such as throw, years, etc. To eliminate the potential pitfalls they may cause,

contract developers should not use the keywords that have been deprecated by the current compiler version.

1.3. Redundant Code

Redundant code in smart contracts can reduce code readability and may require more gas consumption for

contract deployment. It is recommended to eliminate redundant code.

1.4. SafeMath Features

Check whether the functions within the SafeMath library are correctly used in the contract to perform

mathematical operations, or perform other overflow prevention checks.

1.5. require/assert Usage

Solidity uses state recovery exceptions to handle errors. This mechanism will undo all changes made to the

state in the current call (and all its subcalls) and flag the errors to the caller. The functions assert and require

can be used to check conditions and throw exceptions when the conditions are not met. The assert function

can only be used to test for internal errors and check non-variables. The require function is used to confirm the

validity of conditions, such as whether the input variables or contract state variables meet the conditions, or to

verify the return value of external contract calls.

1.6. Gas Consumption

The smart contract virtual machine needs gas to execute the contract code. When the gas is insufficient, the

code execution will throw an out of gas exception and cancel all state changes. Contract developers are

required to control the gas consumption of the code to avoid function execution failures due to insufficient gas.

1.7. Visibility Specifiers

Check whether the visibility conforms to design requirement.

1.8. Fallback Usage

Check whether the Fallback function has been used correctly in the current contract.

2. General Vulnerability

2.1. Integer overflow

Integer overflow is a security problem in many languages, and they are especially dangerous in smart

contracts. Solidity can handle up to 256-bit numbers (2**256-1). If the maximum number is increased by 1, it

will overflow to 0. Similarly, when the number is a uint type, 0 minus 1 will underflow to get the maximum

number value. Overflow conditions can lead to incorrect results, especially if its possible results are not

expected, which may affect the reliability and safety of the program. For the compiler version after Solidity

0.8.0, smart contracts will perform overflow checking on mathematical operations by default. In the previous

compiler versions, developers need to add their own overflow checking code, and SafeMath library is

recommended to use.

2.2. Reentrancy

The reentrancy vulnerability is the most typical Ethereum smart contract vulnerability, which has caused the

DAO to be attacked. The risk of reentry attack exists when there is an error in the logical order of calling the

call.value() function to send assets.

2.3 Pseudo-random Number Generator (PRNG)

Random numbers may be used in smart contracts. In solidity, it is common to use block information as a

random factor to generate, but such use is insecure. Block information can be controlled by miners or obtained

by attackers during transactions, and such random numbers are to some extent predictable or collidable.

2.4. Transaction-Ordering Dependence

In the process of transaction packing and execution, when faced with transactions of the same difficulty,

miners tend to choose the one with higher gas cost to be packed first, so users can specify a higher gas cost to

have their transactions packed and executed first.

2.5. DoS(Denial of Service)

DoS, or Denial of Service, can prevent the target from providing normal services. Due to the immutability of

smart contracts, this type of attack can make it impossible to ever restore the contract to its normal working

state. There are various reasons for the denial of service of a smart contract, including malicious revert when

acting as the recipient of a transaction, gas exhaustion caused by code design flaws, etc.

2.6. Function Call Permissions

If smart contracts have high-privilege functions, such as coin minting, self-destruction, change owner, etc.,

permission restrictions on function calls are required to avoid security problems caused by permission leakage.

2.7. call/delegatecall Security

Solidity provides the call/delegatecall function for function calls, which can cause call injection vulnerability

if not used properly. For example, the parameters of the call, if controllable, can control this contract to

perform unauthorized operations or call dangerous functions of other contracts.

2.8. Returned Value Security

In Solidity, there are transfer(), send(), call.value() and other methods. The transaction will be rolled back if

the transfer fails, while send and call.value will return false if the transfer fails. If the return is not correctly

judged, the unanticipated logic may be executed. In addition, in the implementation of the

transfer/transferFrom function of the token contract, it is also necessary to avoid the transfer failure and return

false, so as not to create fake recharge loopholes.

2.9. tx.origin Usage

The tx.origin represents the address of the initial creator of the transaction. If tx.origin is used for permission

judgment, errors may occur; in addition, if the contract needs to determine whether the caller is the contract

address, then tx.origin should be used instead of extcodesize.

2.10. Replay Attack

A replay attack means that if two contracts use the same code implementation, and the identity authentication

is in the transmission of parameters, the transaction information can be replayed to the other contract to

execute the transaction when the user executes a transaction to one contract.

2.11. Overriding Variables

There are complex variable types in Solidity, such as structures, dynamic arrays, etc. When using a lower

version of the compiler, improperly assigning values to it may result in overwriting the values of existing state

variables, causing logical exceptions during contract execution.

3. Business Security

3.1 Business Logic

Whether the business logic is designed clearly and flawlessly.

3.2 Business Implementations

Whether the code implementation conforms to comments, project whitepaper, etc.

Appendix 3 Disclaimer

This report is made in response to the project code. No description, expression or wording in this report shall

be construed as an endorsement, affirmation or confirmation of the project. This audit is only applied to the

type of auditing specified in this report and the scope of given in the results table. Other unknown security

vulnerabilities are beyond auditing responsibility. Beosin Technology only issues this report based on the

attacks or vulnerabilities that already existed or occurred before the issuance of this report. For the emergence

of new attacks or vulnerabilities that exist or occur in the future, Beosin Technology lacks the capability to

judge its possible impact on the security status of smart contracts, thus taking no responsibility for them. The

security audit analysis and other contents of this report are based solely on the documents and materials that

the contract provider has provided to Beosin Technology before the issuance of this report, and the contract

provider warrants that there are no missing, tampered, deleted; if the documents and materials provided by the

contract provider are missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with

the actual situation, or if the documents and materials provided are changed after the issuance of this report,

Beosin Technology assumes no responsibility for the resulting loss or adverse effects. The audit report issued

by Beosin Technology is based on the documents and materials provided by the contract provider, and relies

on the technology currently possessed by Beosin. Due to the technical limitations of any organization, this

report conducted by Beosin still has the possibility that the entire risk cannot be completely detected. Beosin

disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin Technology.

Appendix 4 About Beosin

BEOSIN is a leading global blockchain security company dedicated to the construction of blockchain security

ecology, with team members coming from professors, post-docs, PhDs from renowned universities and elites

from head Internet enterprises who have been engaged in information security industry for many years.

BEOSIN has established in-depth cooperation with more than 100 global blockchain head enterprises; and has

provided security audit and defense deployment services for more than 1,000 smart contracts, more than 50

blockchain platforms and landing application systems, and nearly 100 digital financial enterprises worldwide.

Relying on technical advantages, BEOSIN has applied for nearly 50 software invention patents and copyrights.

Official Website

https://beosin.com

E-mail

contact@beosin.com

Twitter

https://twitter.com/Beosin_com

	Audit Results Overview
	Findings
	Other Audit Items Descriptions
	Appendix 2 Description of Audit Categories
	Appendix 3 Disclaimer
	Appendix 4 About Beosin

