
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Ankr Token Staking

Veridise Inc.
February 21, 2023

▶ Prepared For:

ANKR
https://www.ankr.com/

▶ Prepared By:

Jon Stephens
Xiangan He
▶ Contact Us: contact@veridise.com

▶ Version History:

Feb 21, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.ankr.com/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-ATS-VUL-001: Incorrect Credit on Migrate 8
4.1.2 V-ATS-VUL-002: Rewards can be claimed multiple times 10
4.1.3 V-ATS-VUL-003: Potential Overflow on Downcast 12
4.1.4 V-ATS-VUL-004: No Validator Punishment Mechanisms 13
4.1.5 V-ATS-VUL-005: Potential gas DoS . 14
4.1.6 V-ATS-VUL-006: No Validation for Setters in StakingConfig 15
4.1.7 V-ATS-VUL-007: Potentially Stuck Validator due to Unset Status 16
4.1.8 V-ATS-VUL-008: DelegateCall Dangerous in Upgradable Contracts . . . 17
4.1.9 V-ATS-VUL-009: No status check in Migrate 18
4.1.10 V-ATS-VUL-010: Potential Validator State Inconsistencies 19
4.1.11 V-ATS-VUL-011: TokenStaking does not override _safeTransferTo 21
4.1.12 V-ATS-VUL-012: Locked Native Tokens 22
4.1.13 V-ATS-VUL-013: Possible Reentrancy . 23

Veridise Audit Report: ANKR © 2023 Veridise Inc.

Executive Summary 1
From Feb. 13 to Feb. 20, ANKR engaged Veridise to review the security of their Ankr Token
Staking protocol. The review covered the on-chain contracts that implement the protocol logic.
Veridise conducted the assessment over 2 person-weeks, with 2 engineers reviewing code over 1
weeks on commit 57a718c. The auditing strategy involved a tool-assisted analysis of the source
code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Ankr Token Staking protocol is an upgradable contract that is already
deployed on mainnet. The new version of the protocol, which is the focus of this audit,
streamlines the previous version of the contract. To do so, it removes validator punishment
mechanisms and places the validator maintenance in the hands of governance so that they are
the only ones that may add or remove validators. Similar to the previous version, delegators
can then stake their funds with validators to receive a share of the rewards given to validators.
Those funds are locked by the contract for a certain staking period of time, after which a user
can undelegate to receive their funds back along with any unclaimed rewards. Since the contract
will be upgraded to this new version, the developers also include migration code to migrate
state from the old contract to the new one.

ANKR provided the source code for the Ankr Token Staking protocol for review. In addition,
they provided a set of tests based on the Truffle testing framework.

Summary of issues detected. The audit uncovered 13 issues, 2 of which are assessed to
be of high or critical severity by the Veridise auditors. Specifically, V-ATS-VUL-001 identifies
a logic error in the migration logic that could prevent users from withdrawing funds and
V-ATS-VUL-002 identifies a logic error that could allow users to claim rewards multiple times. In
addition, the auditors identified a moderate-severity issue where user funds could be improperly
tracked due to an overflow while downcasting (V-ATS-VUL-003). Finally, the auditors identified
several other security concerns, including some potentially unsafe functions (V-ATS-VUL-008,
V-ATS-VUL-010, V-ATS-VUL-011) and missing validation (V-ATS-VUL-006, V-ATS-VUL-007,
V-ATS-VUL-009).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Ankr Token Staking 57a718c Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Feb. 13 - Feb. 20, 2023 Manual & Tools 2 2 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 1 0
Low-Severity Issues 3 3
Warning-Severity Issues 7 5
Informational-Severity Issues 0 0
TOTAL 13 10

Table 2.4: Category Breakdown.

Name Number
Maintainability 4
Data Validation 2
Logic Error 2
Overflow 1
Validator Punishment 1
Denial of Service 1
Locked Funds 1
Reentrancy 1

Veridise Audit Report: ANKR © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Ankr Token Staking protocol defined in the following scope. In our audit, we sought to answer
the following questions:

▶ Can users steal funds from the pool?
▶ Will users be paid upon unstaking?
▶ Can rewards be claimed multiple times?
▶ Is there a method to punish malicious validators?
▶ Can a delegator unstake before the lock period has elapsed?
▶ Can funds be locked within the contract?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The audit reviewed the on-chain behaviors of the Ankr Token Staking protocol, including
delegator and validator migration, validator management and delegator staking. The Veridise
engineers first inspected the provided documentation to understand the high-level design of the
protocol. They then inspected the provided test-cases to better understand the specific contract
behavior. Finally, the auditors performed a week long audit of the code assisted both by static
analyzers and automated testing. In terms of the audit, the following files were in-scope:

▶ contracts/protocol/AnkrTokenStaking.sol
▶ contracts/staking/BaseStaking.sol
▶ contracts/staking/Staking.sol
▶ contracts/staking/StakingConfig.sol
▶ contracts/staking/ValidatorRegistry.sol
▶ contracts/staking/ValidatorStorage.sol
▶ contracts/staking/extension/TokenStaking.sol

Veridise Audit Report: ANKR © 2023 Veridise Inc.

6 3 Audit Goals and Scope

▶ contracts/libs/SnapshotUtil.sol
▶ contracts/libs/ValidatorUtil.sol
▶ contracts/libs/DelegationUtil.sol
▶ contracts/libs/Multicall.sol

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: ANKR

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-ATS-VUL-001 Incorrect Credit on Migrate High Fixed
V-ATS-VUL-002 Rewards can be claimed multiple times High Fixed
V-ATS-VUL-003 Potential Overflow on Downcast Medium Open
V-ATS-VUL-004 No Validator Punishment Mechanisms Low Intended Behavior
V-ATS-VUL-005 Potential gas DoS Low Acknowledged
V-ATS-VUL-006 No Validation for Setters in StakingConfig Low Fixed
V-ATS-VUL-007 Potentially Stuck Validator due to Unset Status Warning Fixed
V-ATS-VUL-008 DelegateCall Dangerous in Upgradable Contracts Warning Open
V-ATS-VUL-009 No status check in Migrate Warning Fixed
V-ATS-VUL-010 Potential Validator State Inconsistencies Warning Open
V-ATS-VUL-011 TokenStaking does not override _safeTransferTo Warning Fixed
V-ATS-VUL-012 Locked Native Tokens Warning Fixed
V-ATS-VUL-013 Possible Reentrancy Warning Fixed

Veridise Audit Report: ANKR © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-ATS-VUL-001: Incorrect Credit on Migrate

Severity High Commit 57a718c
Type Logic Error Status Fixed
Files Staking.sol

Functions migrateDelegator

The following code is used to migrate delegators from the old version of the staking contract
to the new version. To do so, it must update added storage state such as _stakerAmounts and
_stakerShares. During the course of this calculation, the delegated value is will either be
delegations.delegateQueue[j].amount or 2 * delegations.delegateQueue[j].amount depend-
ing on the path taken (where j = delegations.delegateQueue.length - 1). We believe this
value is not computed correctly as it appears that the _stakerAmounts is intended to track the
sum of the active delegated funds.

1 function migrateDelegator(address delegator) public {

2 ...

3

4 uint112 delegated;

5 for (uint256 j = delegations.delegateGap; j < delegations.delegateQueue.length;

j++) {

6 if (delegations.delegateQueue[j].amount < delegated) {

7 delegated -= delegated - delegations.delegateQueue[j].amount;

8 continue;

9 } else if (delegations.delegateQueue[j].amount == delegated) {

10 continue;

11 }

12 uint112 realAmount = delegations.delegateQueue[j].amount - delegated;

13 delegated += realAmount;

14 newDelegations.push(Delegation(delegations.delegateQueue[j].epoch,

realAmount, uint256(realAmount) * BALANCE_COMPACT_PRECISION, 0));

15 delegated += delegations.delegateQueue[j].amount;

16 }

17 _stakerAmounts[validatorAddress][delegator] += delegated;

18 _stakerShares[validatorAddress][delegator] += uint256(delegated) *
BALANCE_COMPACT_PRECISION;

19

20 ...

21 }

Snippet 4.1: The migration function that over-credits the _stakerAmounts and _stakerShares

Impact Since the _stakerAmounts is intended to track the sum of active delegated funds across
the user’s history, the value stored in _stakerAmounts is likely to be inconsistent with the true
value that should be stored. From what we can tell if _stakerAmounts is too high, users may be
able to withdraw too many funds from the pool if the delegation computation is also incorrect.
Alternatively, if _stakerAmounts is too small this could prevent users from undelegating all of

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 9

their funds. As delegated is likely to be too large, we believe that this code will likely cause user
funds to become locked.

Recommendation Update the logic so that user funds will not be locked.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-ATS-VUL-002: Rewards can be claimed multiple times

Severity High Commit 57a718c
Type Logic Error Status Fixed
Files Staking.sol

Functions _stashUnlocked

When a user undelegates, the protocol must determine if sufficient funds have passed their lock
period and what rewards have been claimed so far. This information is then used to credit the
user with funds that they can withdraw and send the user any pending rewards. However, some
paths through the function do not report any rewards have been claimed as shown below.

1 function _stashUnlocked(

2 ValidatorPool memory validatorPool,

3 address delegator,

4 uint112 expectedAmount,

5 uint64 beforeEpoch

6) internal returns (uint96 claimed, uint256 spentShares) {

7 ...

8

9 while(history.delegationGap < delegations.length && delegations[history.

delegationGap].epoch + lockPeriod < beforeEpoch && expectedAmount > 0) {

10 if (delegations[history.delegationGap].amount > expectedAmount) {

11 // deduct undelegated amount

12 uint256 shares = _toShares(validatorPool, uint256(expectedAmount) *
BALANCE_COMPACT_PRECISION);

13 delegations[history.delegationGap].amount -= expectedAmount;

14 require(delegations[history.delegationGap].shares >= shares, "

overflow");

15 delegations[history.delegationGap].shares -= shares;

16 spentShares += shares;

17 // expected amount is filled

18 expectedAmount = 0;

19 // save changes to storage

20 storageDelegations[history.delegationGap] = delegations[history.

delegationGap];

21 break;

22 }

23 expectedAmount -= delegations[history.delegationGap].amount;

24 claimed += delegations[history.delegationGap].claimed;

25 ...

26 }

27

28 ...

29 }

Snippet 4.2: Location where claimed rewards are not being calculated

Impact Since the return value of this function is used to determine how many rewards have
yet to be paid to the user, an individual can make repeated requests to undelegate to receive

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 11

rewards multiple times.

Recommendation If a single delegation can cover the remaining funds, calculate the amount
of claimed funds and reduce the claimed funds appropriately (as otherwise some rewards may
be unclaimable)

Veridise Audit Report: ANKR © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-ATS-VUL-003: Potential Overflow on Downcast

Severity Medium Commit 57a718c
Type Overflow Status Open
Files Staking.sol, ValidatorRegistry.sol

Functions Multiple

To reduce the storage cost, the developers store delegated amounts as multiples of BALANCE_COMPACT_PRECISION
so that values can fit into a uint112. Doing so requires frequent downcasting as values are

typically passed in as a uint256. Since downcasting can overflow without causing a revert to
occur and there may be some left over dust that isn’t accounted for, we recommend that the
developers validate the given compact version is equivalent to what the user passes in.

1 function _delegateUnsafe(address validator, address delegator, uint256 amount,

uint64 sinceEpoch) internal override {

2 uint112 compactAmount = uint112(amount / BALANCE_COMPACT_PRECISION);

3 // add delegated amount to validator snapshot, revert if validator not exist

4

5 ...

6 }

Snippet 4.3: Snippet in _delegateUnsafe that converts an amount to its compact form

Impact If a user passes in a large value, for amount it is possible that this could cause an
overflow, resulting in inaccurate accounting.

Recommendation Add a requirement that the compact representation is equivalent to the
original value.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 13

4.1.4 V-ATS-VUL-004: No Validator Punishment Mechanisms

Severity Low Commit 57a718c
Type Validator Punishment Status Intended Behavior
Files ValidatorRegistry.sol

Functions N/A

Currently, the ValidatorRegistry contract allows the governance to add and activate validators.
To enforce the good behavior of Validators, typically there is a mechanism to punish misbehaving
or malicious validators by slashing or jailing them. In this contract, all of the slashing and jailing
behaviors have been removed.

Impact With no punishment mechanism, validators may misbehave for financial gain.

Recommendation Add a punishment mechanism to the ValidatorRegistry contract.

Developer Response We plan to start with a single trusted validator so we do not need
the slashing logic. If we allow other validators to be added in the future we will add this
functionality back in.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-ATS-VUL-005: Potential gas DoS

Severity Low Commit 57a718c
Type Denial of Service Status Acknowledged
Files Staking.sol

Functions migrateDelegator

The protocol makes frequent use of for loops (and in some cases nested loops) over arrays and
integer ranges which can lead to expensive gas costs.

1 function migrateDelegator(address delegator) public {

2 ...

3

4 for (uint256 i; i < validators.length; i++) {

5 ...

6 for (uint256 j = delegations.delegateGap; j < delegations.delegateQueue.

length; j++) {

7 ...

8 }

9

10 ...

11

12 for (uint256 j = delegations.undelegateGap; j < delegations.

undelegateQueue.length; j++) {

13 ...

14 }

15 ...

16 }

17

18 ...

19 }

Snippet 4.4: Function with nested loops

Impact Such loops can result in prohibitive gas costs rendering certain functions as in-
executable by users.

Recommendation If possible, bound the execution of loops.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 15

4.1.6 V-ATS-VUL-006: No Validation for Setters in StakingConfig

Severity Low Commit 57a718c
Type Data Validation Status Fixed
Files StakingConfig.sol

Functions N/A

The StakingConfig contract stores important configuration information about the system and
allows the governance to change these values via setters. However, many of these functions lack
validation on the input values.

1 function setGovernanceAddress(address newValue) external override

onlyFromGovernance {

2 address prevValue = _slot0.governanceAddress;

3 _slot0.governanceAddress = newValue;

4 emit GovernanceAddressChanged(prevValue, newValue);

5 }

Snippet 4.5: A setter in the StakingConfig contract that doesn’t validate newValue

Impact Without input validation, an admin could make a mistake such as setting the gover-
nance address to address(0).

Recommendation Perform appropriate validation of input values in the setters. In addition,
to prevent the governance address from being transferred to a malicious user or a location that
is inaccessible, the developers should consider a propose/accept mechanism. In this case the
governance address would propose a new governance address and after an appropriate delay
(24 hours for example) the new governance address can accept the appointment. Within the
waiting period, the governance address transfer may be canceled.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.7 V-ATS-VUL-007: Potentially Stuck Validator due to Unset Status

Severity Warning Commit 57a718c
Type Maintainability Status Fixed
Files ValidatorStorage.sol

Functions create

create allows the pool to create validators. There is, however, no enforcement that the Validator’s
new created status is not NotFound. If the Validator’s new status is set to NotFound (either by
missing param input to status, or by mistake).

1 function create(

2 address validatorAddress,

3 address validatorOwner,

4 ValidatorStatus status,

5 uint64 epoch

6) external override onlyFromPool {

7 Validator storage self = _validatorsMap[validatorAddress];

8 require(self.status == ValidatorStatus.NotFound, "Validator: already exist");

9 self.validatorAddress = validatorAddress;

10 self.ownerAddress = validatorOwner;

11 self.status = status;

12 self.changedAt = epoch;

13

14 // save validator owner

15 require(validatorOwners[validatorOwner] == address(0x00), "owner in use");

16 validatorOwners[validatorOwner] = validatorAddress;

17

18 // add new validator to array

19 if (status == ValidatorStatus.Active) {

20 activeValidatorsList.push(validatorAddress);

21 }

22 }

Snippet 4.6: The function with no input validation on the status

Impact If create was called with the status NotFound, then the pool to call create, which will
create a validator with bad status. Since validatorOwners[validatorOwner] = validatorAddress,
any subsequent attempts to call create again on the validator address with the same owner will
fail. In addition, activate requires self.status == ValidatorStatus.Pending so the validator
will never be activated

Recommendation Check that the user passes in a valid status.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 17

4.1.8 V-ATS-VUL-008: DelegateCall Dangerous in Upgradable Contracts

Severity Warning Commit 57a718c
Type Data Validation Status Open
Files Multicall.sol

Functions _fastDelegateCall

The staking contract is both upgradable and it extends the MultiCall contract. The MultiCall
contract allows a user to batch calls to the contract by repeatedly delegated calls to itself with
calldata provided by the user. However, OpenZeppelin advises that users avoid the use of
delegate call in their documentation on Upgradable contracts as they could potentially be used
to destroy the implementation contract.

Impact If a self-destruct could be invoked using the delegate call on the implementation
contract, it could prevent users from interacting with the staking contract.

Recommendation To avoid the case were a user could interact with the implementation
contract, OpenZeppelin suggests “breaking” the implementation contract in the constructor so
that it cannot be used. Their recommendation on how to do so is provided here.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#potentially-unsafe-operations
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

18 4 Vulnerability Report

4.1.9 V-ATS-VUL-009: No status check in Migrate

Severity Warning Commit 57a718c
Type Maintainability Status Fixed
Files ValidatorStorage.sol

Functions migrate

The migrate function is used to migrate validators from the old contract version to the new
contract version. When doing so the function automatically pushes the validator onto the active
validators list but does not check the validator’s status to ensure it is active.

1 function migrate(Validator calldata validator) external override onlyFromPool {

2 _validatorsMap[validator.validatorAddress] = validator;

3 validatorOwners[validator.ownerAddress] = validator.validatorAddress;

4 activeValidatorsList.push(validator.validatorAddress);

5 }

Snippet 4.7: Function to migrate validators to new contract version

Impact This could allow a validator with a non-active status to be added to the active validator
list, potentially allowing a validator to accidentally be marked as active.

Recommendation Check the validator’s status to make sure it is active.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 19

4.1.10 V-ATS-VUL-010: Potential Validator State Inconsistencies

Severity Warning Commit 57a718c
Type Maintainability Status Open
Files ValidatorRegistry

Functions _touchValidatorSnapshot

The protocol stores snapshots of the validator state over epochs of time. It will then read and
update information in these epochs as the validator state changes. Certain values, however,
are intended to be maintained across epochs such as the totalDelegated and commissionRate.
The API below, however, allows developers to request and modify in previous epochs without
changing the ones that come after.

1 function _touchValidatorSnapshot(Validator memory validator, uint64 epoch)

internal returns (ValidatorSnapshot storage) {

2 ValidatorSnapshot storage snapshot = _validatorSnapshots[validator.

validatorAddress][epoch];

3 // if snapshot is already initialized then just return it

4 if (snapshot.totalDelegated > 0) {

5 return snapshot;

6 }

7 // find previous snapshot to copy parameters from it

8 ValidatorSnapshot memory lastModifiedSnapshot = _validatorSnapshots[validator

.validatorAddress][validator.changedAt];

9 // last modified snapshot might store zero value, for first delegation it

might happen and its not critical

10 snapshot.totalDelegated = lastModifiedSnapshot.totalDelegated;

11 snapshot.commissionRate = lastModifiedSnapshot.commissionRate;

12 // we must save last affected epoch for this validator to be able to restore

total delegated

13 // amount in the future (check condition upper)

14 if (epoch > validator.changedAt) {

15 _validatorStorage.change(validator.validatorAddress, epoch);

16 }

17 return snapshot;

18 }

Snippet 4.8: The function used to find validator state at a given epoch for modification.

Impact If a user changes values in an epoch before validator.changedAt those values will not
be reflected in the most recent epoch. Since it appears that certain values, such as totalDelegated,
are intended to be consistent across epochs such modifications could result in inconsistent
states and locked funds (i.e. totalDelegated in some epoch X should be the same in X+1 unless
a user undelegated those funds). Note that this could also be used to copy recent changes into a
previous epoch but this only appears to impact the frontend.

Recommendation It appears that this API is currently used almost exclusively to get the next
epoch. In the one case where this does not occur, the modified value does not appear to be

Veridise Audit Report: ANKR © 2023 Veridise Inc.

20 4 Vulnerability Report

tracked across epochs (totalRewards). To prevent future errors, we would recommend checking
that only states at or more recent than changedAt are modified.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 21

4.1.11 V-ATS-VUL-011: TokenStaking does not override _safeTransferTo

Severity Warning Commit 57a718c
Type Maintainability Status Fixed
Files TokenStaking.sol

Functions _safeTransferTo

The TokenStaking contract overrides the behavior of Staking so that ERC20 tokens can be staked
instead of native tokens. To do so, it overrides the payment methods used by Staking so that
ERC20 payments are performed instead. The TokenStaking contract, however, only overrides
two of the 3 native payment methods as the _safeTransferTo function still performs native
payments.

Impact Since _safeTransferTo is never used, this doesn’t impact the current version of the
protocol. If future changes to the contract do call this function, however, users may be paid
using the wrong currency.

Recommendation Override _safeTransferTo in TokenStaking so that it also pays users ERC20
tokens.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

22 4 Vulnerability Report

4.1.12 V-ATS-VUL-012: Locked Native Tokens

Severity Warning Commit 57a718c
Type Locked Funds Status Fixed
Files TokenStaking.sol

Functions receive

The TokenStaking contract overrides the behavior of Staking so that ERC20 tokens can be staked
instead of native tokens. This contract still accepts native tokens though due to the definition of
receive shown below in the Staking contract.

1 receive() external payable {

2 }

Snippet 4.9: The receive function defined by Staking and not overriden by TokenStaking

Impact Since TokenStaking does not provide support for native tokens, any tokens sent to this
contract will be locked in the contract.

Recommendation Override receive in TokenStaking so that funds are rejected or add in
functionality to rescue such tokens.

© 2023 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 23

4.1.13 V-ATS-VUL-013: Possible Reentrancy

Severity Warning Commit 57a718c
Type Reentrancy Status Fixed
Files Staking.sol

Functions migrateDelegator

The Staking contract migrates users from the old version of the contract to their new version
with the function migrateDelegator. This function processes the old state of the contract and
updates delegations in the new contract state. While doing so, the migration process will transfer
any unclaimed rewards to the user with the function shown below. While it is likely that the
native version of the _safeTransferWithGasLimit would not succeed since it strictly limits gas
and the migradeDelegator function is gas-intensive, it is possible that the ERC20 version of
the API could reenter. This is because some ERC20 tokens, such as those that adhere to the
ERC777 specification (which extends ERC20) introduce an unsafe callback in transfer and
transferFrom.

1 function _transferDelegatorRewards(address validator, address delegator) internal

{

2 // next epoch to claim all rewards including pending

3 uint64 beforeEpochExclude = _MIGRATION_EPOCH;

4 // claim rewards and undelegates

5 uint256 availableFunds = _processDelegateQueue(validator, delegator,

beforeEpochExclude);

6 // for transfer claim mode just all rewards to the user

7 _safeTransferWithGasLimit(payable(delegator), availableFunds);

8 // emit event

9 emit Claimed(validator, delegator, availableFunds, beforeEpochExclude);

10 }

Snippet 4.10: Function used to send unclaimed rewards to users during the migration process

Impact If a reentrancy were to occur here, someone could receive rewards multiple times.

Recommendation Since migrateDelegator must either execute fully or revert, move the state-
ment isMigratedDelegator[delegator] = true; to right after the isMigratedDelegator check.

Veridise Audit Report: ANKR © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-ATS-VUL-001: Incorrect Credit on Migrate
	V-ATS-VUL-002: Rewards can be claimed multiple times
	V-ATS-VUL-003: Potential Overflow on Downcast
	V-ATS-VUL-004: No Validator Punishment Mechanisms
	V-ATS-VUL-005: Potential gas DoS
	V-ATS-VUL-006: No Validation for Setters in StakingConfig
	V-ATS-VUL-007: Potentially Stuck Validator due to Unset Status
	V-ATS-VUL-008: DelegateCall Dangerous in Upgradable Contracts
	V-ATS-VUL-009: No status check in Migrate
	V-ATS-VUL-010: Potential Validator State Inconsistencies
	V-ATS-VUL-011: TokenStaking does not override _safeTransferTo
	V-ATS-VUL-012: Locked Native Tokens
	V-ATS-VUL-013: Possible Reentrancy

