
Public

SMART CONTRACT AUDIT REPORT

for

ANKR Protocol

Prepared By: Patrick Lou

PeckShield
July 9, 2022

1/17 PeckShield Audit Report #: 2022-102

contact@peckshield.com

Public

Document Properties

Client ANKR
Title Smart Contract Audit Report
Target ANKR Protocol
Version 1.0
Author Patrick Lou
Auditors Patrick Lou, Xuxian Jiang
Reviewed by Xiaotao Wu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0-rc1 March 19, 2022 Patrick Lou Release Candidate #1
1.0 July 9, 2022 Patrick Lou Final Release

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 156 0639 2692
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2022-102

Public

Contents

1 Introduction 4
1.1 About ANKR Protocol . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Properly Update State Variables in burnAndSetPending()/updatePendingBurning() . 11
3.2 Improved Validation Checks In distributeManual() 12
3.3 Trust Issue of Admin Keys . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2022-102

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
ANKR protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About ANKR Protocol

The ANKR liquid staking is an enhanced method of staking on the BNB Smart Chain (previously BSC).
The enhancement allows the users to stake their funds through the corresponding smart contracts
on ANKR, accumulate rewards, and receive their stakes as well as rewards when unstaking. The basic
information of the audited protocol is as follows:

Table 1.1: Basic Information of ANKR Protocol

Item Description
Name ANKR
Type BSC Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 9, 2022

In the following, we show the MD5 hash value of the compressed file used in this audit:

• MD5 (BNB.zip) = f44d26579438b7b2f43b6cd6d5ed659f

And here is the final MD5 hash value of the compressed file after all fixes for the issues found in
the audit have been checked in:

• MD5 (BNB.zip) = b8616b15df08e972030e2a757fd9bde3

4/17 PeckShield Audit Report #: 2022-102

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [6]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/17 PeckShield Audit Report #: 2022-102

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2022-102

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2022-102

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2022-102

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the ANKR protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 1

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/17 PeckShield Audit Report #: 2022-102

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability and 1 informational recommendation.

Table 2.1: Key ANKR Protocol Audit Findings

ID Severity Title Category Status
PVE-001 High Properly Update State Vari-

ables in burnAndSetPend-
ing()/updatePendingBurning()

Coding Practices Fixed

PVE-002 Low Improved Validation Checks In dis-
tributeManual()

Coding Practices Fixed

PVE-003 Medium Trust Issue of Admin Keys Security Features Confirmed

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2022-102

Public

3 | Detailed Results

3.1 Properly Update State Variables in
burnAndSetPending()/updatePendingBurning()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: High

• Target: BinancePool_R2

• Category: Coding Practices [4]

• CWE subcategory: CWE-563 [2]

Description

The ANKR liquid staking allows the users to stake their funds through the corresponding smart contracts
on the BNB smart chain, accumulate rewards, and receive their stakes/rewards when unstaking. While
reviewing the unstake() logic, we notice that the function logic of aBNBb_R2::burnAndSetPending()

needs to be corrected.
To elaborate, we show below this burnAndSetPending() function. The function is called at the

end of the BinancePool_R2::unstake() to burn the corresponding staked bonds as well as reset some
contract state variables to reflect the amount changes of the unstaked bonds (lines 214-217). It
comes to our attention that it does not update the _totalStaked state variable which stores the value
of total staked bonds. In other words, the _totalStaked state is incorrectly updated, hence leading to
an incorrect calculation of the exchange ratio between bonds amount and underlying shares (in the
updateRatio() function). More specifically, there is a need to reflect the deduction of total staked
bonds.

209 function burnAndSetPending(address account , uint256 amount)
210 public
211 override
212 onlyBondMinter
213 {
214 _pendingBurn[account] = _pendingBurn[account] + amount;
215 _pendingBurnsTotal = _pendingBurnsTotal + amount;

11/17 PeckShield Audit Report #: 2022-102

Public

216 uint256 sharesToBurn = _bondsToShares(amount);
217 _totalUnbondedBonds += amount;
218 _burn(account , sharesToBurn);
219 emit Transfer(account , address (0), amount);
220 }

Listing 3.1: aBNBb_R2::burnAndSetPending()

Also we notice there is another similar case which does not update the _totalUnbondedBonds state
variable. During the unstaking process, upon the cross-transaction completion, the BNB backend
service executes BinancePool_R2::distributeRewards() to distribute stakes and rewards to the users.
It will invoke the following updatePendingBurning() function in which the related state variables are
updated (lines 229-230). It comes to our attention that the _totalUnbondedBonds is not updated
as it should be the same as in burnAndSetPending() function. Namely, we need to reflect the total
unbounded bonds amount change by the following statement: "_totalUnbondedBonds -= amount".

209 function updatePendingBurning(address account , uint256 amount)
210 public
211 override
212 onlyBondMinter
213 {
214 uint256 pendingBurnableAmount = _pendingBurn[account];
215 require(pendingBurnableAmount >= amount , "amount is wrong");
216 _pendingBurn[account] = pendingBurnableAmount - amount;
217 _pendingBurnsTotal = _pendingBurnsTotal - amount;
218 }

Listing 3.2: aBNBb_R2::updatePendingBurning()

Recommendation Properly update the _totalStaked and _totalUnbondedBonds state variables
as suggested above.

Status This issue has been fixed in the following latest code package.

• MD5 (bnb.zip) = b8616b15df08e972030e2a757fd9bde3

3.2 Improved Validation Checks In distributeManual()

• ID: PVE-002

• Severity: Informational

• Likelihood: NA

• Impact: NA

• Target: BinancePool_R2

• Category: Coding Practices [4]

• CWE subcategory: CWE-563 [2]

12/17 PeckShield Audit Report #: 2022-102

Public

Description

In the BinancePool_R2 contract, the distributeManual() function is used to distribute stakes and
rewards to the specific user manually if the distributeRewards() function failed to do so for the user.
It is used as a way to make sure the specific user can receive the stakes and rewards in case of the
user fails to get them via distributeRewards().

While reviewing the function, we notice that there is an issue with the condition check on
whether to proceed with the function execution. To elaborate, we show below this distributeManual

() function. Specifically, it validates the balance of this contract to ensure there is enough BNB left
to transfer to the user (lines 207-210). In this case, the amount variable stores the amount of BNB

that will be sent to the user and it only needs to check address(this).balance >= amount instead of
the current logic address(this).balance >= amount + stashedForManualDistributes (line 208).

192 function distributeManual(uint256 id) external nonReentrant {
193 require(
194 markedForManualDistribute[id],
195 "not marked for manual distributing"
196);
197 address [] memory claimers = new address [](1);
198 uint256 [] memory amounts = new uint256 [](1);
199
200 address claimer = _pendingClaimers[id];
201 address payable wallet = payable(address(claimer));
202 uint256 amount = pendingClaimerUnstakes[claimer];
203
204 markedForManualDistribute[id] = false;
205 stashedForManualDistributes -= amount;
206
207 require(
208 address(this).balance >= amount + stashedForManualDistributes ,
209 "insufficient pool balance"
210);
211 claimers [0] = claimer;
212 amounts [0] = amount;
213 IInternetBond(_bondContract).updatePendingBurning(claimer , amount);
214 pendingClaimerUnstakes[claimer] = 0;
215
216 (bool result ,) = wallet.call{value: amount }("");
217 require(result , "failed to send rewards to claimer");
218 delete _pendingClaimers[id];
219
220 emit RewardsDistributed(claimers , amounts , 0);
221 }

Listing 3.3: BinancePool_R2::distributeManual()

Recommendation Revise the above distributeManual() function to properly validate the con-
tract balance check as below.

13/17 PeckShield Audit Report #: 2022-102

Public

207 require(
208 address(this).balance >= amount ,
209 "insufficient pool balance"
210);

Listing 3.4: BinancePool_R2::BinancePool_R2()

Status This issue has been fixed in the following latest code package.

• MD5 (bnb.zip) = b8616b15df08e972030e2a757fd9bde3

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [3]

• CWE subcategory: CWE-287 [1]

Description

In the ANKR protocol, there are privileged owner/minter/operator accounts that play a critical role in
governing and regulating the system-wide operations (e.g., mint and burn aBNBb tokens). These
privileged accounts also have the capability of controlling or governing the flow of assets managed
by this protocol. Our analysis shows that these privileged accounts need to be scrutinized. In
the following, we examine these privileged accounts and the related privileged accesses in current
contracts.

To elaborate, we show below example privileged routines in multiple contracts. These routines al-
low the owner/minter/operator accounts to mint new aBNBb, set system parameters, distribute rewards,
etc.

26 function mint(address account , uint256 shares) public onlyMinter {
27 _lockedShares = _lockedShares - int256(shares);
28 _mint(account , shares);
29 emit Transfer(address (0), account , shares);
30 }
31
32 function burn(address account , uint256 amount) public override onlyMinter {
33 uint256 shares = _bondsToShares(amount);
34 _lockedShares = _lockedShares + int256(shares);
35 _burn(account , shares);
36 emit Transfer(account , address (0), amount);
37 }

Listing 3.5: aBNBb_R2::mint()/burn()

14/17 PeckShield Audit Report #: 2022-102

Public

255 function setMinimumStake(uint256 minStake) external onlyOperator {
256 _minimumStake = minStake;
257 }
258
259 function getRelayerFee () external view returns (uint256) {
260 return _tokenHub.getMiniRelayFee ();
261 }
262
263 function changeIntermediary(address intermediary) external onlyOwner {
264 _intermediary = intermediary;
265 }
266
267 function changeBondContract(address bondContract) external onlyOwner {
268 _bondContract = bondContract;
269 }
270
271 function changeTokenHub(address tokenHub) external onlyOwner {
272 _tokenHub = ITokenHub(tokenHub);
273 }

Listing 3.6: BinancePool_R2::Multiple Functions

It would be worrisome if each privileged owner/minter/operator account is a plain EOA account.
Note that a multi-sig account could greatly alleviate this concern, though it is still far from perfect.
Specifically, a better approach is to eliminate the administration key concern by transferring the
role to a community-governed DAO. In the meantime, a timelock-based mechanism can also be
considered as mitigation.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed.

15/17 PeckShield Audit Report #: 2022-102

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the ANKR protocol, which allows the
users stake their funds through the corresponding smart contracts, accumulate rewards, and receive
their stakes and rewards when unstaking. During the audit, we notice that the current code base is
well organized and those identified issues are confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2022-102

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[4] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2022-102

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About ANKR Protocol
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Properly Update State Variables in burnAndSetPending()/updatePendingBurning()
	Improved Validation Checks In distributeManual()
	Trust Issue of Admin Keys

	Conclusion
	References

