
// Private Smart Contract Security Assessment 07.30.2024 - 08.12.2024

Liquid Staking Cadence & EVM
Ankr

Report a Bug

Liquid Staking Cadence & EVM - Ankr

Prepared by: HALBORN Last Updated 08/26/2024 Date of Engagement by: July 30th, 2024 - August 12th, 2024

Summary
 OF ALL REPORTED FINDINGS HAVE BEEN

ADDRESSED

ALL FINDINGS

12
CRITICAL

1
HIGH

1
MEDIUM

1
LOW

4
INFORMATIONAL

5

1 . I n t r o d u c t i o n

Ankr engaged our security analysis team to conduct a comprehensive security audit of their smart
contract ecosystem. The primary aim was to meticulously assess the security architecture of the
smart contracts to pinpoint vulnerabilities, evaluate existing security protocols, and offer actionable
insights to bolster security and operational efficacy of their smart contract framework. Our
assessment was strictly confined to the smart contracts provided, ensuring a focused and
exhaustive analysis of their security features.

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings
overview
7. Findings & Tech Details

7.1 Unvalidated evm execution
result in transferunstakedtoevm

1 0 0%

2 . A s s e s s m e n t S u m m a r y

Our engagement with Ankr spanned a 1-week period, during which we dedicated one full-time
security engineer equipped with extensive experience in blockchain security, advanced penetration
testing capabilities, and profound knowledge of various blockchain protocols. The objectives of this
assessment were to:

- Verify the correct functionality of smart contract operations.

- Identify potential security vulnerabilities within the smart contracts.

- Provide recommendations to enhance the security and efficiency of the smart contracts.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Our testing strategy employed a blend of manual and automated techniques to ensure a thorough
evaluation. While manual testing was pivotal for uncovering logical and implementation flaws,
automated testing offered broad code coverage and rapid identification of common vulnerabilities.
The testing process included:

- A detailed examination of the smart contracts' architecture and intended functionality.

- Comprehensive manual code reviews and walkthroughs.

- Functional and connectivity analysis utilizing tools like Solgraph.

- Customized script-based manual testing and testnet deployment using Foundry.

This executive summary encapsulates the pivotal findings and recommendations from our security
assessment of Ankr smart contract ecosystem. By addressing the identified issues and
implementing the recommended fixes, Ankr can significantly boost the security, reliability, and
trustworthiness of its smart contract platform.

7.2 Incorrect resource handling
in transferadmin transaction
7.3 Lack of duplication check in
adddelegation function
7.4 Hardcoded values in
registerdelegator transaction
7.5 Missing initialization in
flowstakingpool contract
7.6 Unused
publishpausercapability function
in stakingmanager contract
7.7 Potential gas limit issues in
transferunstakedtoevm
7.8 Unused parameter in staker
resource initialization
7.9 Inefficient initialization
process in stakingmanager
contract
7.10 Potential failure in
decoding ethereum addresses
7.11 Overly permissive admin
resource access
7.12 Overly permissive
mutability for
stakingcontractevm

8. Review Notes

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

M ​E

E

E = m ​∏ e

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: stakefi-smart-contract

(b) Assessed Commit ID: 6b06658

(c) Items in scope:

cadence/contracts/StakingManager_v0_0_2.cdc
cadence/transactions/owner/initStakingCollection.cdc
cadence/transactions/admin/transferAdmin.cdc
cadence/transactions/admin/registerDelegator.cdc
cadence/transactions/admin/unpauseStakingManager.cdc
cadence/transactions/pauser/claimPauserCapability.cdc
cadence/transactions/pauser/pauseStakingManager.cdc
cadence/transactions/operator/claimOperatorCapability.cdc
cadence/transactions/operator/unstake.cdc
cadence/transactions/operator/restakeRewards.cdc
cadence/transactions/operator/transferAndStake.cdc
cadence/transactions/operator/stake.cdc
solidity/contracts/tokens/AnkrRatioFeed.sol
solidity/contracts/FlowStakingPool.sol

Out-of-Scope:

REMEDIAT ION COMMIT ID :

7b80e2e

https://github.com/Ankr-network/stakefi-smart-contract

96bbcb4
d51f80b
845f8d6

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

1
HIGH

1
MEDIUM

1
LOW

4

INFORMATIONAL

5

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNVALIDATED EVM EXECUTION RESULT IN
TRANSFERUNSTAKEDTOEVM

CRITICAL SOLVED - 07/31/2024

INCORRECT RESOURCE HANDLING IN
TRANSFERADMIN TRANSACTION

HIGH SOLVED - 07/31/2024

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF DUPLICATION CHECK IN ADDDELEGATION
FUNCTION

MEDIUM SOLVED - 07/31/2024

HARDCODED VALUES IN REGISTERDELEGATOR
TRANSACTION

LOW SOLVED - 08/15/2024

MISSING INITIALIZATION IN FLOWSTAKINGPOOL
CONTRACT

LOW SOLVED - 07/31/2024

UNUSED PUBLISHPAUSERCAPABILITY FUNCTION IN
STAKINGMANAGER CONTRACT

LOW SOLVED - 08/15/2024

POTENTIAL GAS LIMIT ISSUES IN
TRANSFERUNSTAKEDTOEVM

LOW SOLVED - 08/15/2024

UNUSED PARAMETER IN STAKER RESOURCE
INITIALIZATION

INFORMATIONAL SOLVED - 08/15/2024

INEFFICIENT INITIALIZATION PROCESS IN
STAKINGMANAGER CONTRACT

INFORMATIONAL SOLVED - 08/15/2024

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

POTENTIAL FAILURE IN DECODING ETHEREUM
ADDRESSES

INFORMATIONAL SOLVED - 08/15/2024

OVERLY PERMISSIVE ADMIN RESOURCE ACCESS INFORMATIONAL ACKNOWLEDGED

OVERLY PERMISSIVE MUTABILITY FOR
STAKINGCONTRACTEVM

INFORMATIONAL SOLVED - 08/15/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 U N VA L I DAT E D EV M E X EC U T I O N R ES U LT I N
T R A N S F E RU N STA K E DTO EV M
// CRITICAL

Description
In the TransferUnstakedToEVM function of the StakingManager contract, the EVM execution result
from the ownerCOA.call() is not validated. This oversight could lead to silent failures where the EVM
execution fails, but the function continues as if it succeeded. Such behavior could result in
inconsistencies between the Cadence and EVM sides of the system, potentially leading to loss of
funds or incorrect accounting of unstaked tokens.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C (9.4)

Recommendation
Modify the TransferUnstakedToEVM function to check the status of the EVM execution result. After
the ownerCOA.call(), add a condition to verify that Result.status == successful. If the status is
not successful, the function should revert the transaction and provide an error message. This change
will ensure that any failures in the EVM execution are caught and handled appropriately, maintaining
the consistency and integrity of the cross-chain staking operations.

Remediation Progress

SOLVED: The call result status is now verified.

Remediation Hash
7b80e2e480a0a9b64f2b6fba7a74b3fb135690ce

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 2 I N C O R R EC T R ES O U RC E H A N D L I N G I N
T R A N S F E R A D M I N T R A N SAC T I O N
// HIGH

Description
The transferAdmin transaction in the StakingManager contract contains critical errors in resource
handling. First, it incorrectly uses = instead of <- when loading the Admin resource, which violates
Cadence's resource management rules. Second, the post-condition attempts to access the resource
after it has been moved, which is invalid and will fail to compile or execute.

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:C/D:N/Y:N/R:P/S:C (7.8)

Recommendation
Revise the transferAdmin transaction to correctly move the Admin resource using <-. For the post-
condition, obtain a reference to the stored resource after moving it. This ensures proper resource
management and allows for valid post-condition checks. Consider removing the post-condition if it's
not essential, as the successful execution of the resource move implicitly confirms the transfer.
These changes will correct the resource handling, prevent potential loss of the Admin resource, and
ensure the transaction's validity and safety.

Remediation Progress

SOLVED: The code now transfers the resource as expected

Remediation Hash
7b80e2e480a0a9b64f2b6fba7a74b3fb135690ce

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AC%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7. 3 L AC K O F D U P L I CAT I O N C H EC K I N A D D D E L EG AT I O N
F U N C T I O N
// MEDIUM

Description
The AddDelegation function in the StakingManager contract's Admin resource lacks a crucial
duplication check for the _stakingNodeId and _delegatorId parameters. This oversight allows for
the addition of duplicate delegation entries, which could lead to several issues:
1. Inflated delegation counts
2. Inconsistent state management
3. Potential for erroneous calculations or distributions based on duplicate entries
4. Increased gas costs for unnecessary storage
The absence of this check could result in operational inefficiencies and potentially compromise the
integrity of the staking system.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:M/D:N/Y:N/R:P/S:C (5.1)

Recommendation
Implement a duplication check in the AddDelegation function before adding new entries. This check
should verify that no existing delegation combines the same _stakingNodeId and _delegatorId.
Consider using a composite key or a mapping to efficiently track existing delegations. If a duplicate is
found, the function should either revert the transaction or return an error code, depending on the
desired behavior. This change will ensure the uniqueness of delegations, maintain data integrity, and
prevent potential issues arising from duplicate entries.

Remediation Progress

SOLVED: A new function isEqual was added and used as a filter for the delegations list. If the
resulting list after filtering is none zero, the transaction will assert. The isEqual function does verify

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

that both _stakingNodeId and _delegatorId are not present.

Remediation Hash
7b80e2e480a0a9b64f2b6fba7a74b3fb135690ce

7. 4 H A R D C O D E D VA L U ES I N R EG I ST E R D E L EG ATO R
T R A N SAC T I O N
// LOW

Description
The registerDelegator transaction in the StakingManager contract uses hardcoded values for
nodeID and amount when calling the registerDelegator function. This approach lacks flexibility and
prevents users from specifying their desired node and delegation amount. It could lead to incorrect
delegations, limit the contract's functionality, and potentially cause users to delegate to unintended
nodes or with unintended amounts.

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:L/D:M/Y:L/R:P/S:U (3.8)

Recommendation
Modify the registerDelegator transaction to accept nodeID and amount as parameters. Update the
function call within the transaction to use these parameters instead of hardcoded values. This
change allows users to specify their intended node and delegation amount, providing the necessary
flexibility for various delegation scenarios. It will also enhance the transaction's reusability and
reduce the risk of unintended delegations. Ensure to add appropriate input validation for these new
parameters to maintain the security and integrity of the delegation process.

Remediation Progress

SOLVED: The transaction now accepts a parameter.

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AM%2FY%3AL%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AM%2FY%3AL%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AM%2FY%3AL%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AM%2FY%3AL%2FR%3AP%2FS%3AU

7. 5 M I S S I N G I N I T I A L I Z AT I O N I N F LOWSTA K I N G P O O L
C O N T R AC T
// LOW

Description
In the FlowStakingPool contract, there is a critical oversight in the initialization process. The
contract fails to call the __QueuePool_init function during its initialization. This omission has
significant implications, particularly for the _DISTRIBUTE_GAS_LIMIT variable, which is typically set
during this initialization step.
The absence of this initialization means that the _DISTRIBUTE_GAS_LIMIT will not be set to its
default value. This limit is crucial for controlling gas consumption during the distribution of pending
rewards, which is a key functionality of the staking pool. Without a properly set gas limit, the
contract may encounter issues when attempting to distribute rewards, potentially leading to failed
transactions or unexpected behavior.
This oversight forces the governance to manually intervene by calling the setDistributeGasLimit
function post-deployment to set the appropriate gas limit. This not only introduces an additional step
in the deployment process but also opens up a window of vulnerability where the contract could be in
an inconsistent state if this step is forgotten or delayed.

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:C (3.1)

Recommendation
To address this issue, modify the initialize function in the FlowStakingPool contract to include a
call to __QueuePool_init. This ensures that all necessary initializations, including setting the
_DISTRIBUTE_GAS_LIMIT, are performed during contract deployment.

Remediation Progress

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

SOLVED: The distributeGasLimit parameter was added and used to initialize the
__QueuePool_init.

Remediation Hash
d51f80b8ab251ded621866b7bbec18f63d01ec06

7. 6 U N U S E D P U B L I S H PAU S E RCA PA B I L I T Y F U N C T I O N I N
STA K I N G M A N AG E R C O N T R AC T
// LOW

Description
The StakingManager contract contains a PublishPauserCapability function that is defined but
never called within the contract. This function is designed to issue a pauser capability and publish it
to a specified address. However, its lack of usage raises concerns about the contract's design and
functionality.
Unused functions in smart contracts can lead to several issues:
1. Code bloat: They increase the contract's size without providing any benefit, potentially leading to
higher deployment costs.
2. Confusion: They may mislead developers or auditors about the contract's actual functionality.
3. Potential security risks: Unused functions might be accidentally used in future updates, leading to
unintended consequences.
4. Maintenance overhead: They require ongoing consideration during code reviews and updates,
despite not contributing to the contract's operations.
The presence of this unused function suggests that either a planned feature was not fully
implemented, or that the contract's pause functionality is being managed differently than originally
intended.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:C (3.1)

Recommendation
To address this issue, consider the following options:
1. If the pauser capability is intended to be used, implement the necessary logic to call
PublishPauserCapability at the appropriate time, such as during contract initialization or as part
of an admin function.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

2. If the function is no longer needed, remove it entirely from the contract. This will simplify the
codebase and reduce potential confusion.
Before making any changes, carefully review the contract's requirements and design to ensure that
removing or modifying this function won't impact any planned future functionality. If the function is
removed, ensure that any related events or state variables are also cleaned up to maintain
consistency throughout the contract.
By addressing this unused function, you'll improve the contract's clarity, reduce its complexity, and
minimize potential sources of confusion or future errors.

Remediation Progress

SOLVED: The AddPauser function is now calling the StakingManager.PublishPauserCapability
directly.

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

7.7 P OT E N T I A L G AS L I M I T I S S U ES I N
T R A N S F E RU N STA K E DTO EV M
// LOW

Description
The TransferUnstakedToEVM function in the StakingManager contract uses a hardcoded gas limit of
10000 for the EVM call. This approach lacks flexibility and may not account for variations in gas
costs or the base transaction cost. It fails to consider that EVM transactions typically have a fixed
base cost of 21000 gas, which may or may not be included in the gasLimit parameter for Cadence
EVM calls.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:M/D:L/Y:L/R:F/S:U (2.5)

Recommendation
Modify the TransferUnstakedToEVM function to accept a gasLimit parameter. Implement pre-
execution checks to ensure the provided gas limit is sufficient for the operation, including any base
transaction costs. Conduct thorough testing on Cadence EVM to determine if the base 21000 gas is
included in the gasLimit parameter. Update the function to dynamically calculate or adjust the gas
limit based on these findings, ensuring it covers all necessary costs while remaining efficient. This
approach will provide better control over gas usage and improve the function's adaptability to
different network conditions.

Remediation Progress

SOLVED: The TransferUnstakedToEVM function does now accept a gasLimit parameter. The call will
revert in case the transaction uses more than the specified gas on the EVM side and with the
verification on the call result the entire cadence transaction revert too.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AL%2FY%3AL%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AL%2FY%3AL%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AL%2FY%3AL%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AL%2FY%3AL%2FR%3AF%2FS%3AU

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

7. 8 U N U S E D PA R A M E T E R I N STA K E R R ES O U RC E
I N I T I A L I Z AT I O N
// INFORMATIONAL

Description
In the StakingManager contract, the Staker resource's initializer function takes an operator
parameter that is not used within the function body.
The operator parameter is declared but never utilized within the function. This unused parameter
introduces unnecessary complexity to the contract's interface and could lead to confusion for
developers interacting with or maintaining the contract. It may also mislead users into thinking that
the operator address is being used or stored when it actually isn't.
While this doesn't pose an immediate security risk, it's a code quality issue that could indirectly lead
to misunderstandings or errors in the future. It violates the principle of least astonishment and
potentially impacts the contract's maintainability.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:P/S:U (1.3)

Recommendation
To address this issue, consider one of the following approaches:
1. If the operator parameter is truly not needed for the Staker resource initialization, remove it from
the function signature.
2. If the operator address should be stored or used within the Staker resource, add the necessary
logic to utilize it.
By implementing one of these changes, you'll improve the clarity and maintainability of the contract.
It will also ensure that the contract's interface accurately reflects its actual behavior and
requirements. This change will reduce potential confusion for future developers and users interacting
with the StakingManager contract.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU

Remediation Progress

SOLVED: The parameter was removed.

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

7. 9 I N E F F I C I E N T I N I T I A L I Z AT I O N P RO C ES S I N
STA K I N G M A N AG E R C O N T R AC T
// INFORMATIONAL

Description
The current implementation of the StakingManager contract and its initialization process in the
initStakingCollection transaction has several inefficiencies and potential security issues:
1. The stakingManagerCodeHex is required to be passed as a parameter in the
initStakingCollection transaction. This approach is problematic because it requires the contract
code to be available at the time of initialization, which may not always be the case and could lead to
deployment complexities.
2. The creation of essential resources like StakingCollection and CadenceOwnedAccount is not
performed during the contract's initialization. Instead, these resources are expected to exist
beforehand or are created in a separate step. This multistep initialization process increases the risk
of incomplete setup and potential vulnerabilities if all steps are not executed correctly.
3. The current design doesn't take full advantage of the fact that the contract creator (who will be
the admin) has the authority to create these resources during the initialization phase.
These issues collectively make the deployment and setup process more complex, error-prone, and
potentially insecure. It also increases the chances of the contract being in an inconsistent state if all
initialization steps are not completed correctly.

BVSS

AO:S/AC:L/AX:L/C:N/I:H/A:M/D:N/Y:N/R:P/S:C (1.1)

Recommendation
To address these issues and improve the overall security and efficiency of the StakingManager
contract, implement the following changes:
Move the creation of StakingCollection and other essential resources into the contract's initializer.

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AM%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

Remediation Progress

SOLVED: The initialization process was moved to the StakingManager instead of relaying on an
initialization transaction.

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

7.1 0 P OT E N T I A L FA I L U R E I N D EC O D I N G E T H E R E U M
A D D R ES S ES
// INFORMATIONAL

Description
The StakingManager contract's initialization process uses a manual method to decode the
stakingContractEvmHex into a byte array. This approach may fail if the input includes the '0x' prefix
common in Ethereum addresses. The current implementation doesn't account for this prefix,
potentially causing decoding errors or invalid address interpretations.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U (0.8)

Recommendation
Replace the manual decoding process with the EVM.addressFromString function. This function
handles the '0x' prefix gracefully and provides robust address conversion. Update the Staker
resource to accept an EVM.EVMAddress instead of a raw byte array. This change will improve the
contract's robustness in handling various address input formats, reduce the risk of decoding errors,
and simplify the initialization process. It also aligns the contract more closely with standard
Ethereum address handling practices, enhancing its interoperability and user-friendliness.

Remediation Progress

SOLVED: The entire codebase is now using EVM.ddressFromString.

Remediation Hash
96bbcb4a375b6dac63bc0378d1fbf76cd862606b

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU

7.1 1 OV E R LY P E R M I S S I V E A D M I N R ES O U RC E AC C ES S
// INFORMATIONAL

Description
The Admin resource in the StakingManager contract allows the resource owner to call the Pause
method without proper entitlement restrictions. This oversight could lead to unintended pausing of
the contract by the admin, bypassing the intended access control mechanism.

BVSS

AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:F/S:U (0.3)

Recommendation
When interacting with the Admin resource, use entitled references instead of accessing the entire
resource. Specifically, use auth(StakingManager.StakingAdmin) &StakingManager.Admin when
borrowing the resource. This ensures that only methods authorized for StakingAdmin can be called,
preventing unauthorized access to sensitive functions like Pause. Additionally, always use borrow
instead of load when accessing the resource in transactions to maintain proper access control and
prevent unintended privilege escalation.

Remediation Progress

ACKNOWLEDGED: The Ankr team acknowledged this finding.

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AM%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU

7.1 2 OV E R LY P E R M I S S I V E M U TA B I L I T Y FO R
STA K I N G C O N T R AC T EV M
// INFORMATIONAL

Description
In the StakingManager contract, the StakingContractEvm field within the Staker resource is
declared as a variable (var) instead of a constant (let). The current declaration is:

access(all) var StakingContractEvm: EVM.EVMAddress

While the access control mechanisms in place prevent unauthorized modifications to this field,
declaring it as mutable when it's not intended to be changed introduces unnecessary flexibility. This
could potentially lead to confusion or unintended modifications in future development or
maintenance of the contract.
Although there isn't an immediate security risk due to the access restrictions in place, following the
principle of least privilege and immutability where possible is a best practice in smart contract
development. It helps prevent potential bugs and makes the code's intentions clearer.

BVSS

AO:S/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U (0.1)

Recommendation
If there are no plans to change the StakingContractEvm address after initialization, it's
recommended to declare it as a constant using the let keyword. This change would more accurately
reflect the intended immutability of the EVM address and prevent any accidental modifications in the
future.

Remediation Progress

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AU

SOLVED: The intended behavior is to allow changing the StakingContractEvm in case it is required.
The code changes add an entitled UpdateStakingContractEvm function to StakingAdmin and a
contract only function on the Staker resource named SetStakingContractEvm. The entitled function
does call.

Remediation Hash
845f8d6196b9a5277e9031cc8755ee739976e2e4

8 . R EV I E W N OT ES

Tra n s a c t i o n s Rev i ew

Transaction Details

cadence/transactions/owner/initStakingCollection.cdc
No issues. But most of the funcionality could be moved into the

StakingManager initialisation.

cadence/transactions/admin/transferAdmin.cdc Invalid usage of resource <- / =. Reported as issue.

cadence/transactions/admin/registerDelegator.cdc nodeID and amount should be a parameter.

cadence/transactions/admin/unpauseStakingManager.cdc No issues.

cadence/transactions/pauser/claimPauserCapability.cdc No issues.

cadence/transactions/pauser/pauseStakingManager.cdc No issues.

cadence/transactions/operator/claimOperatorCapability.cdc No issues.

cadence/transactions/operator/unstake.cdc No issues.

cadence/transactions/operator/restakeRewards.cdc No issues.

cadence/transactions/operator/transferAndStake.cdc No issues.

cadence/transactions/operator/stake.cdc No issues.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

