@5 BEOSIN

Blockchain Security

Polygon

Smart Contract Security Audit

V1.0

No. 202206151130

Jun 15%, 2022

Contents

Summary of audit results 1
1 Overview 3
1.1 PTOJECE OVEIVIEW ...veevviiiieiieiietieieesieesteesteesteesteesseessaesseesseesseesseesseessaessaesseesseesssesssesssesseesssesssesssesseessenns 3
1.2 AUAIE OVETVIEW ...ttt ettt ettt ettt et e et e e st e st e e et e ebeem e e s e eteeseeme e seeseentensesseeneeneenseeneeneeneas 3
2 Findings 4
[Polygon-1] Operator and owner have a high authoritycoccoeeiiiiiiiiiie e 5
[Polygon-2] Owner has @ high authOTitYc.occviriiiiiiieciecierie sttt sere e sa e aessbessaesenesene e 7
[Polygon-3] ClaimTolntermediary function implementation problem............cccceevierierienierieeseeseerieenieens 9
[Polygon-4] CentraliZation TiSKcccieiiieiiieiieii ettt et ettt et et e 11
[Polygon-5] Signature TEUSE TISKcoiiiiiiiieiiieiee ettt ettt ettt et e sbe e b e b e sbeesbeens 12
[Polygon-6] Risk of iNSUTTICIENT ZAScvivvieiieiiciiiie ettt s e st ste e s taesraeseaessaessnessaesenens 13
[Polygon-7] The corresponding event is NOt trig@ered........c.cccvervieiiieiieeciieiieieeieeieereereereeresseessessseeens 14
[Polygon-8] RedUNdant COAEcuiriiiiieiieieeie ettt ettt sttt e e aeesneesneesaee s 16
3 Appendix 17
3.1 Vulnerability Assessment Metrics and Status in Smart CONtracts..........cceccvevvereereereesieesieeseeseeseens 17
3.2 AUAIE CALEGOTICS -.uveeuveeureeutieteeie et et ete e bt et e te e teeteeabe e bt enseenseanseenseenseenseenseenseenseeaseenseenseenseenseenseenne 19
3.3 Disclaimer SO B b C VST BT e RO B C RS LI e ST 21

3.4 ABOUE BEOSIN ..ottt sttt ettt sttt be st 22

Polygon Security Audit

Summary of audit results

After auditing, 2 High-risk, 1 Medium-risk, 3 Low-risk and 2 Info items were identified in the Polygon
project. Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Security vulnerability

4
3
3
2 2
2
1
1
0
0
Critical High Medium Low Info

M Critical M High ™ Medium B Low M Info
“Notes:
® Risk Description:
1. Centralization risk

The owner can set the operator address, and both the owner and operator addresses can modify key
parameters in the contract. For some parameters, only the owner has the permission to modify. There may

be some centralization risk.
2. Risk of insufficient gas

Multiple for loops are used in many places in the contract. If there are too many loops, the related

function calls may fail.
3. Signature reuse risk

In the checkUnstakeFeeSignature function, the nonce is not used to limit the number of times
the signature is used when verifying the signature data, which may cause the signature data to be
used multiple times. If the fee changes dynamically, it may cause users to withdraw with a lower

rate multiple times.

® Project Description:

1. Basic Token Information

Polygon Security Audit

Token name Ankr MATIC Reward Earning Bond
Token symbol | aMATICb

Decimals 18

Pre-mint 0

Total supply Initial supply is 0 (Mintable, burnable)
Token type ERC-20

Table 1 aMATICD token info

Token name Ankr MATIC Reward Bearing Certificate
Token symbol | aMATICc

Decimals 18

Pre-mint 0

Total supply Initial supply is 0 (Mintable, burnable)
Token type ERC-20

2. Business overview

Table 2 aMATICc token info

The Polygon project contains a token contract and two business contracts. In the token contract, the
number of shares is recorded inside the contract, and what the user queries is the number of bonds. Shares
and bonds are converted according to a certain ratio (the ratio can be arbitrarily modified by the owner or
operator address). Users can stake Matic tokens in the PolygonPool contract to obtain aMATICb tokens,
and the aMATICb tokens and aMATICc tokens are interchangeable on a 1:1 ratio. When the user
withdraws the matic tokens staked in the PolygonPool contract, he needs to first apply for the withdrawal
through the data signed by the notary address, and then the operator address calls the serveClaims
function to send the tokens to the user. And when the user withdraws, a certain amount of ANKR Token

will be charged as a handling fee.

1 Overview

1.1 Project Overview

Polygon Security Audit

Project Name

Polygon

Platform

Ethereum

File Hash (SHA256)

aMATICb.sol

d62eaa020483e77b71221df649d2a5328428d6d6425ea3bdd9c14
f4a9afee517(Initial)

59a3d5e421b90849b93581e811f81fac3db384c61bdd217£53044
9721aa379¢9 (Final)

aMATICc.sol

4£49008¢971bd4165011a742862208b7a96e622d6£24592d3¢32
50c7519bf8ab (Initial)

5add76bdb752147e69adf66c26023635¢2 1b7d69290a3e68849a
04£2b8cc193b (Final)

PolygonPool.sol

91b63cfBabffc7448ada8a9d98d13611866d436545d2a28cac3840
688c1226¢2 (Initial)

f2¢cf0cd8c40c8f4da75dc5e6228825a5¢837268ddce48fad87da43
87241676d6 (Final)

1.2 Audit Overview

Audit work duration: April 24 , 2022 — June 15, 2022

Audit methods: Formal Verification, Static Analysis, Typical Case Testing and Manual Review.

Audit team: Beosin Technology Co. Ltd.

Polygon Security Audit

2 Findings

Index Risk description Severity level Status
Polygon-1 Operator and owner have a high authority High Acknowledged
Polygon-2 Owner has a large permission High Fixed
Polygon-3 ClaimT oIntermediagoiulreliion implementation Fixed
Polygon-4 Centralization risk Low Acknowledged
Polygon-5 Signature reuse risk Low Acknowledged
Polygon-6 Risk of insufficient gas Low Acknowledged
Polygon-7 The corresponding event is not triggered Info Fixed
Polygon-8 Redundant code Info Acknowledged

Risk Details Description:

1. Polygon-1 is not fixed and may cause users to be unable to withdraw assets.

2. Polygon-4 is not fixed and may cause a potential centralization risk.

3. Polygon-5 is not fixed and may cause users to withdraw with a lower fee multiple times.

4. Polygon-6 is not fixed and may cause the related function call to fail when there are too many loops.

5. Polygon-8 is not fixed but does not cause security issues.

Polygon Security Audit

[Polygon-1] Operator and owner have a high authority

Severity Level

High

Type

Business Security

Lines

PolygonPool R2.sol#L.240-326

Description

In the PolygonPool R2 contract, the withdrawal request requires the signature of the
notary address after the user stakes, and after the request is initiated, the operator
address operation is required to send the token to the user. If the notary address and
operator address do not operate as expected, users may not be able to withdraw

tokens staked in the contract.

function unstake(uint256 amount, uint256 fee, uint256 useBeforeBlock, bytes memory signature) override external nonReentrant {
uint256 shares = TinternetBond_R1(_bondContract).balanceToShares(amount);
_unstake(msg.sender, amount, shares, fee, useBeforeBlock, signature, true);

function unstakeBonds(uint256 amount, uint256 fee, Uint256 useBeforeBlock, bytes memory signature) override external nonReentrant {
uint236 shares = TinternetBond R1(_bondContract).balanceToShares(amount);
_unstake(msg.sender, amount, shares, fee, useBeforeBlock, signature, true);

function unstakeCerts(uint256 shares, uint256 fee, uint256 useBeforeBlock, bytes memory signature) override external nonReentrant {
uint256 amount - IinternetBond_R1(_bendContract).sharesToBalance(shares);
IinternetBond R1(_bondContract).lockSharesFor(msg.sender, shares);
_unstake(msg.sender, amount, shares, fee, useBeforeBlock, signature, false);

function _unstake(address staker, uint256 amount, uint256 shares, uint256 fee, uint256 useBeforeBlock, bytes memory signature, bool isRebasing) internal {

require(IERC268Upgradeable(_bondContract).balanceOf (staker) >= amount, "cannot claim more than have on address");
require(block.number < useBeforeBlock, "fee approval expired”);
require(
_checkunstakeFeeSignature(fee, useBeforeBlock, staker, signature),
"Invalid unstake fee signature”
)3
require(_ankrToken.transferfrom(staker, _feeCollector, fee), "could not transfer unstake fee");
_pendingClaimers. push(staker);
_pendingClaimAmounts . push(amount);
IinternetBond_R1(_bondContract).lockForDelayedBurn(staker, amount};
emit MaticClaimPending(staker, amount);
emit TokensBurned(staker, amount, shares, fee, isRebasing);

Figure 1 Source code of related functions

Polygon Security Audit

function serveClaims(uint256 amountToUse, address payable residueAddress, uint256 minThreshold) public onlyQperator payable {
address[] memory claimers = new address[](_pendingClaimers.length.sub(_pendingMaticClaimGap)};
uint256[] memory amounts = new uint256[](_pendingClaimers.length.sub{_pendingMaticClaimGap));
uint256 availableAmount = _maticToken.balanceOf(address(this));
availableAmount = availableAmount.sub(_getTotalPendingStakes());
require(amountToUse <= availableAmount, "not enough MATIC tokens to serve claims™);
if (amountTolse > @) {

278 availableAmount = amountToUse;

:;

uint256 j = @

uint256 gaps = @;

uint256 i = 8;

for (i = _pendingMaticClaimGap; i < _pendingClaimers.length; i++) {
/* if the number of tokens left is less than threshold do not try to serve the claims */
if (availableAmount < minThreshold) {

break;

)

address claimer = _pendingClaimers[i];

uint256 amount = _pendingClaimAmounts[i];

/* we might have gaps lets just skip them (we shrink them on full claim) */

if (claimer == address(@) || amount == @) {
gaps++;
continue;

1

if (availableAmount < amount) {
break;

}

claimers[j] = claimer;

amounts[j] = amount;

address payable wallet = payable(address(claimer));

a1 _maticToken.transfer(wallet, amount);

availableAmount = availableAmount.sub(amount);

J++s

IinternetBond_R1(_bondContract).commitDelayedBurn(claimer, amount);
delete _pendingClaimAmounts[i];

delete _pendingClaimers[i];

/* when we delete items from array we generate new gap, lets remember how many gaps we did to skip them in next claim *
gaps++;

}
_pendingMaticClaimGap = _pendingMaticClaimGap.add(gaps);
311 uint256 missing = @;
312 for (i = _pendingMaticClaimGap; i < _pendingClaimers.length; i++) {
313 missing = missing.add(_pendingClaimAmounts[i]);
31 }
= /* Send event with results */
if (availableAmount > 8) {
317 _maticToken.transfer(residueAddress, availableAmount);
114 }
319 /* decrease arrays */
uint256 removeCells = claimers.length.sub(j);
if (removeCells > @) {
322 assembly {mstore(claimers, sub(mload(claimers), removeCells))}
323 assembly {mstore(amounts, sub(mload(amounts), removeCells))}
324 }

emit ClaimsServed(claimers, amounts, missing);

Figure 2 Source code of serveClaims function

Recommendations It is recommended to remove the restriction on users' withdrawal of principal.

Status Acknowledged. The project party confirmed the logic of this part of the code.

Polygon Security Audit

[Polygon-2] Owner has a high authority

Severity Level High

Type Business Security

Lines aMATICb_R3.sol#L.108-125, 214-222

Description In the aMATICb_R3 contract, the owner can call mintBonds and mint functions to

mint tokens at will, and call burn and commitDelayedBurn functions to burn tokens at
any address.

function mintBonds{address account, uint256 amount) public override onlyBondMinter {
uint256 shares = _bondsToShares(amount);

_mint(account, shares);
emit Transfer({address(8), account, _sharesToBonds({shares));

%
¥

function mint(address account, uint256 shares) public onlyMinter {
_lockedShares = _lockedShares.sub(int256(shares));
_mint({account, shares);
emit Transfer{address(8), account, _sharesToBonds({shares));

I

function burn{address account, uint258& amount) public override onlyMinter {
uint256 shares = _bondsToShares({amount);
_lockedshares = _lockedShares.add(int256(shares));
_burn({account, shares);
emit Transfer(account, address(8), _sharesToBonds({shares});

Figure 3 Source code of related function

modifier onlyMinter() {
reguire{msg.sender == _crossChainBridge, "Minter: not allowed");

modifier onlyBondMinter() {
require(msg.sender == polygonPool, "Minter: not allowed");

Figure 4 Source code of onlyMinter and onlyBondMinter modifiers (Unfixed)

Recommendations It is recommended to cancel the corresponding permissions of owner in the modifiers.

Status Fixed.

@ BEOSIN Polygon Security Audit

Blockchéin Security

214 modifier onlyMinter() {

215 require(msg.sender == _crossChainBridge, "Minter: not allowed”);
: o
:: - modifier onlyBondMinter() {
228 require({msg.sender == polygonPool, "Minter: not allowed");
221 g
2 ¥

Figure 5 Source code of onlyMinter and onlyBondMinter modifiers (Fixed)

Polygon Security Audit

[Polygon-3] ClaimTolntermediary function implementation problem

Severity Level

Type Business Security

Lines PolygonPool R2.sol#L121-166

Description The incorrect use of msg.value in the claimTolntermediary function of the
PolygonPool contract may cause the function call to fail and ETH to be locked in the

contract.

function claimToIntermediary(address payable intermediary, uint256 threshold) public onlyOperator payable {

address[] memory stakers = new address[](_pendingStakers.length.sub(_pendingGap});

uint256[] memory amounts = new uint256[](_pendingStakers.length.sub(_pendingGap));

uint2s56 total = 8;

uint2s6 j = @;

uint256 gaps = @;

uint256 i = @;

for (i = _pendingGap; i < _pendingStakers.length; Ii++) {
/* if total exceeds threshold then we can't proceed stakes anymore (don't move this check to the end of scope) */
if (total »>= threshold) {

break;
¥
address staker = _pendingStakers[i];
uint256 amount = _pendingUserStakes[staker];

/* we might have gaps lets just skip them (we shrink them on full claim) */
if (staker == address(@) || amount == @) {
gaps++;
continue;
¥
/* if stake amount with current total exceeds threshold then split it */
if (total.add(amount) > threshold) {
amount = threshold.sub(total);
}
stakers[j] = staker;
amounts[j] = amount;
total = total.add(amount);
J++5
/* lets release pending stakes only if amount is zero */
_pendingUserStakes[staker] = _pendingUserStakes[staker].sub(amount);
if (_pendingUserstakes[staker] == @) {
delete _pendingStakers[i];
/* when we delete items from array we generate new gap, lets remember how many gaps we did to skip them in next claim */
gaps++;
}
}
_pendingGap = _pendingGap.add(gaps);
/* claim funds to intermediary */
_maticToken.transfer(intermediary, total.add(msg.value));
/* decrease arrays */
uint256 removeCells = stakers.length.sub(j);
if (removeCells > 8) {
assembly {mstore(stakers, sub(mload(stakers), removeCells))}
assembly {mstore(amounts, sub(mload(amounts), removeCells))}

Figure 6 Source code of claimTolntermediary function (Unfixed)

Recommendations It is recommended to remove the payable modifier of the claimTolntermediary

function and the msg.value in the transfer function parameter.

Status Fixed.

Polygon Security Audit

Blockchain Security

function claimToIntermediary(address payable intermediary, uint256 threshold) public onlyOperator {
address[] memory stakers = new address[](_pendingStakers.length.sub(_pendingGap));
uint256[] memory amounts = new uint256[](_pendingStakers.length.sub(_pendingGap));
uint256 total = @;
uint256 j = 8;
uint256 gaps = @;
uint2s6 1 = 8;
for (i = _pendingGap; i < _pendingStakers.length; i++) {
/* if total exceeds threshold then we can't proceed stakes anymore (don't move this check to the end of scope) */
if (total »>= threshold) {
break;

address staker = _pendingStakers[i];
uint256 amount = _pendingUserStakes[staker];
/* we might have gaps lets just skip them (we shrink them on full claim) */
if (staker == address(®) || amount == @) {
gaps++;
continue;
}
/* if stake amount with current total exceeds threshold then split it */
if (total.add(amount) > threshold) {
amount = threshold.sub(total);
3
stakers[j] = staker;
amounts[j] = amount;
total = total.add(amount);
hiaH
/* lets release pending stakes only if amount is zero */
_pendingUserStakes[staker] = _pendingUserStakes[staker].sub(amount);
if (_pendingUserstakes[staker] == @) {
delete _pendingStakers[i];
/* uhen we delete items from array we generate new gap, lets remember how many gaps we did to skip them in next claim */
gaps++;
}
¥
_pendingGap = _pendingGap.add(gaps);
/* claim funds to intermediary */
require(_maticToken.transfer(intermediary, total), "matic not sent");
/* decrease arrays */
uint256 removeCells = stakers.length.sub(j);
if (removeCells > @) {
assembly {mstore(stakers, sub(mload(stakers), removeCells))}
assembly {mstore(amounts, sub(mload(amounts), removeCells))}

¥

emit IntermediaryClaimed(stakers, amounts, intermediary, total);

Figure 7 Source code of claimTolntermediary function (Fixed)

10

Polygon Security Audit

[Polygon-4] Centralization risk

Severity Level Low
Type Business Security
Lines aMATICb R3.sol#L281-291, L226-236

PolygonPool R2.sol#L188-198, L332-346, L352-366

Description The owner of the aMATICb contract can call functions such as changeOperator,
changePolygonPool, changeCrossChainBridge and other functions to modify
contract-related parameters. The owner authority in the PolygonPool contract can call
the function changeBondContract , setNotary , setAnkrTokenAddress , and

setMinimumStake to modify the contract-related parameters.

function changeOperator{address operator) public onlyOwner {
_operator = operator;

4

function changePolygonPool(address polygonPool) public onlyOwner {
_polygonPocl = polygonPool;

function changeCrossChainBridge(address crossChainBridge) public onlyQOwner {
_crossChainBridge = crossChainBridge;

=

Figure 8 Source code of related functions

function setMinimumStake{uint256 minStake) public onlyOperator {
_minimumStake = minStake;

)

function setFesCollector{address feeCellecteor) public onlyOwner {
_feeCollector = feeCollector;

4

function setMotary(address notary) public onlyOwner {
_notary = notary;

)

function setlinkrTokenfAddress(IERC28Upgradeable ankrToken) public onlyOwner {
_ankrToken = ankrToken;

A

Figure 9 Source code of related functions

Recommendations It is recommended to use multi-signature wallet, TimeLock contract, DAQO, etc. as the

contract owner.

Status Acknowledged.

11

Polygon Security Audit

[Polygon-5] Signature reuse risk

Severity Level Low
Type Business Security
Lines PolygonPool R3.sol#1.382-387
Description In the checkUnstakeFeeSignature function, the nonce is not used to limit the number
of times the signature is used when verifying the signature data, which may cause the
signature data to be used multiple times. If the fee changes dynamically, it may cause
users to withdraw with a lower fee multiple times.
function _checkUnstakeFeeSignature(
uint256 fee, uint256 useBeforeBlock, address staker, bytes memory signature
) public view returns (bool) [
I bytes32 payloadHash = keccak256(abi.encode{currentChain(), address(this), fee, useBeforeBlock, staker')}j
return ECDSAUpgradeable.recover(payloadHash, signature) == _notary;
Figure 9 Source code of checkUnstakeFeeSignature functions
Recommendations It is recommended to add a nonce to the signature data.
Status Acknowledged. The project party confirmed the logic of this part of the code.

12

Polygon Security Audit

[Polygon-6] Risk of insufficient gas

Severity Level

Low

Type

Business Security

Lines PolygonPool _R2.s0l#L.281-336, L397-406, L342-352, L220-234, L101-114, L129-
174, L210-218, L236-248
Description In the PolygonPool contract, calcPendingClaimGap, getRawPendingStakes,
getPendingClaims, getPendingStakes, claimTolntermediary, pendingMaticClaimsOf,
getRawPendingClaims, serveClaims and other functions use for loops. If the length
of the related array is too large, the call may fail due to insufficient gas.
function serveClaims(uint256 amountTolse, address payable residusAddress, uint256 minThreshold) public onlyOperator payable {
address[] memory claimers - new address[](_pendingClaimers.langth.sub(_pendingfaticClaimGap));
uint256[] memory amounts = new uint256[](_pendingClaimers.length.sub(_pendingMaticClaimGap));
uint256 availableAmount = _maticToken.balanceCf(address(this));
availableAmount = availableAmount.sub(_getTotalPendingStakes());
require(amountTollse <= availableAmount, "not enough MATIC tokens to serve claims™);
if (amountTolse > @) {
availableAmount = amountToUse;
}
uint256 j = @;
uint256 gaps = 8;
uint256 i = @;
for (i = _pendingMaticClaimGap; i < _pendingClaimers.length; i++) {
/* if the number of tokens left is less than threshold do not try to serve the claims */
if (availableAmount < minThreshold) {
break;
}
address claimer = _pendingClaimers[i];
uint256 amount = _pendingClaimAmounts[i];
/* we might have gaps lets just skip them (we shrink them on full claim) */
if (claimer == address(@) || amount - @) {
gaps++;
continue;
}
if (availableAmount < amount) {
break;
}
claimers[j] = claimer;
amounts[j] = amount;
address payable wallet = payable(address{claimer)});
requirs(_maticToken.transfer{wallet, amount), "cannot send matic to claimer");
availableAmount = availableAmount.sub(amount);
J++;
IinternetBond_R1(_bondContract).commitDelayedBurn(claimer, amount);
delete _pendingClaimAmounts[i];
delete _pendingClaimers[i];
/* when we delete items from array we generate new gap, lets remember how many gaps we did to skip them in next claim */
gaps++;
¥
_pendingMaticClaimGap = _pendingMaticClaimGap.add(gaps);
uint256 missing = @;
for (i = _pendingMaticClaimGap; i < _pendingClaimers.length; i++) {
missing = missing.add(_pendingClaimAmounts[i]);
0
Figure 11 Source code of related functions
Recommendations It is recommended to use a separate variable to store the total amount of stakes and

withdrawals to avoid traversing the array and consuming too much gas. When getting
missing data in the serveClaims function, use the total amount minus the number that

has been claimed instead of traversing the array to calculate.

Status

Acknowledged.

13

Polygon Security Audit

[Polygon-7] The corresponding event is not triggered

Severity Level Info

Type Coding Conventions

Lines PolygonPool R2.sol#1.352-366, 1.192-198

Description Functions such as changeOperator, changeBondContract, setFeeCollector, setNotar,

and setAnkrTokenAddress in the PolygonPool contract are not triggered when they

are called.

function setMinimumStake(uint256 minStake) public onlyOperator {
_minimumStake = minStake;

function setFeeCollector(address feeCollector) public onlyOwner {
_feeCollector = feeCollector;

o

function setMotary(address notary) public onlyOwner {
_notary = notary;

function setAnkrTokenAddress{IERC28Upgradeable ankrToken) public onlyOwner {
_ankrToken = ankrToken;

o

Figure 10 Source code of related functions (Unfixed)

function changeQperator(address operator) public onlyOwner {
_operator = operator;

function changeBondContract{address bondContract) public onlyOwner {
_bondContract = bondContract;

g

Figure 11 Source code of related functions (Unfixed)

Recommendations It is recommended to trigger the corresponding event.

Status Fixed.

14

&

BEOSIN

Blockchéin Security.

Polygon Security Audit

function setMinimumStake(uint256 minStake) public onlyOperator {
_minimumStake = minStake;
emit MinimumStakeChanged(minstake);

}

function setFeeCollector(address feeCollector) public onlyOwner {
_feeCollector = feeCollector;
emit FeeCollectorChanged(fesCollector);

function setMotary(address notary) public onlyOwner {
_notary = notary;
emit NotaryChanged(notary);

}

function setlnkrTokenAddress({IERC2@Upgradeable ankrToken) public onlyQOwner {
_ankrToken = ankrToksn;
emit AnkrTokenAddressChanged(address{ankrToken));

Figure 12 Source code of related functions (Fixed)

function changeOperator(address operator) public onlyQOwner {
_operator = operator;
amit OperatorChanged(operator);

L

function changeBondContract(address bondContract) public onlyOwner {
__bondContract = bondContract;
emit BondContractChanged{bondContract);

-

Figure 13 Source code of related functions (Fixed)

15

Polygon Security Audit

[Polygon-8] Redundant code

Severity Level Info

Type Coding Conventions

Lines PolygonPool R2.sol#L15-19, L39

Description The PausableUpgradeable module is inherited in the PolygonPool contract, but the

pause function is not implemented in the main contract. The variable collectedFee is

not used in the contract.

contract PolygonPool R2 is PausableUpgradeable, ReentrancyGuardUpgradeable, OwnableUpgradeable, IGlobalPool R1 {

using SafeMathUpgradeable for uint25e;
using MathUpgradeable for uint25s;

Figure 14 Source code of Polygon contract

mapping(address =» uint256) private pendingUserStakes;
address[] private pendingStakers;
address private operator;

drocc privata _potgny-.

uint256 private collectedFee;
UINL2GH privaite _MinimumsLake,
address private bondContract;

Figure 15 Unused variable collectedFee

Recommendations It is recommended to delete the relevant code.

Status Acknowledged.

16

Polygon Security Audit ‘

£

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report
provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:
"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of
exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

LikelihOO(IimpaCt Severe High Medium Low
Probable Critical High Low
Possible High High Low
Unlikely Low Info
Rare Low Low Info Info
3.1.2 Degree of impact

® Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,
integrity, availability of smart contracts or their economic model, which can cause substantial
economic losses to the contract business system, large-scale data disruption, loss of authority
management, failure of key functions, loss of credibility, or indirectly affect the operation of other
smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.
® High

High impact generally refers to the vulnerability can have a relatively serious impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

17

Polygon Security Audit ‘

y

® Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
small amount of economic loss to the contract business system, individual business unavailability

and other impact.
® Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract,

which can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

® Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.
® Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.
® Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.
® Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the

conditions for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the issue.

Acknowledged The project party confirms and chooses to ignore the issue.

18

Polygon Security Audit

3.2 Audit Categories

No. Categories Subitems

Compiler Version Security

Deprecated Items

1 Coding Conventions Redundant Code

require/assert Usage

Gas Consumption

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

2 General Vulnerability
call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

Business Logics

Business Implementations

Manipulable Token Price

3 Business Security
Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions, General
Vulnerability, Business Security. Their specific definitions are as follows:

® Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,
smart contracts developed in Solidity language should fix the compiler version and do not use
deprecated keywords.

® General Vulnerability

19

Polygon Security Audit

General Vulnerability include some common vulnerabilities that may appear in smart contract
projects. These vulnerabilities are mainly related to the characteristics of the smart contract itself,
such as integer overflow/underflow and denial of service attacks.

® Business Security

Business security is mainly related to some issues related to the business realized by each project,
and has a relatively strong pertinence. For example, whether the lock-up plan in the code match the

white paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something Beosin can control.

Business security requires the participation of the project party. The project party and users need to stay vigilant at all times.

20

Polygon Security Audit ‘

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement. The
Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used within the
conditions and scope agreed in the service agreement. Other third parties shall not transmit, disclose, quote,

rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or wording
contained therein shall not be interpreted as affirmation or confirmation of the project, nor shall any warranty
or guarantee be given as to the absolute flawlessness of the code analyzed, the code team, the business model

or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the technology
currently available to Beosin. However, due to the technical limitations of any organization, and in the event
that the code provided by the Served Party is missing information, tampered with, deleted, hidden or

subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be
utilized as investment suggestions of any type. This report represents an extensive evaluation process designed

to help our customers improve code quality while mitigating the high risks in Blockchain.

21

Polygon Security Audit

3.4 About BEOSIN

Affiliated to BEOSIN Technology Pte. Ltd., BEOSIN is the first institution in the world specializing in the
construction of blockchain security ecosystem. The core team members are all professors, postdocs, PhDs, and
Internet elites from world-renowned academic institutions.BEOSIN has more than 20 years of research in
formal verification technology, trusted computing, mobile security and kernel security, with overseas
experience in studying and collaborating in project research at well-known universities. Through the security
audit and defense deployment of more than 2,000 smart contracts, over 50 public blockchains and wallets, and
nearly 100 exchanges worldwide, BEOSIN has accumulated rich experience in security attack and defense of

the blockchain field, and has developed several security products specifically for blockchain.

22

@5 BEOSIN

Blockchain Security

Official Website
https://www.beosin.com

Telegram

https://t.me/+dD8Bnqd 133RmNWNI
Twitter
https://twitter.com/Beosin_com
Email

Contact(@beosin.com

	Summary of audit results
	1 Overview
	1.1 Project Overview
	1.2 Audit Overview

	2 Findings
	[Polygon-1] Operator and owner have a high authori
	[Polygon-2] Owner has a high authority
	[Polygon-3] ClaimToIntermediary function implement
	[Polygon-4] Centralization risk
	[Polygon-5] Signature reuse risk
	[Polygon-6] Risk of insufficient gas
	[Polygon-7] The corresponding event is not trigger
	[Polygon-8] Redundant code

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About BEOSIN

