Blockchain Security

@5 BEOSIN

Ankr bas

Smart Contract Security Audit

V1.3

No. 202204261400

Apr 26, 2022

Contents

Summary of audit results 1
1 Overview 2
1.1 PTOJECE OVEIVIEW ...veevviiiieiieiietieieesieesteesteesteesteesseessaesseesseesseesseesseessaessaesseesseesssesssesssesseesssesssesssesseessenns 2
1.2 AUAIE OVETVIEW ...ttt ettt ettt ettt ettt et et e e e st e st e et e ebeem e et e eseeseem e e beeseentenseaseeneeneenseeneeneeneas 2
2 Findings 3
[Ankr bas-1] A validator can vote MUltiple tIMESoecuiriiriiieiieieeeee ettt 4
[Ankr bas-2] Poorly designed cfor fUNCLIONc.ecovieiiiiriieiieiieiece et esr e esbeesse e e s 5
[Ankr bas-3] User funds will not be available for withdrawalcccoooeiieiiiiieiiiciecce e 6
[Ankr bas-4] The slashValidator function is not rigorously judged..........cceoveiiriieiieiiieiieeeeeeeeee, 8
[Ankr bas-5] Poorly designed undelegate fUNCHONcccueeiuieiiiiiiiriieieeeeee ettt 9
[Ankr bas-6] Poorly designed delegateTo fUNCHONc.cccveeciieiiiiiciicie et 10
[ANKE DAS-7] MISSINZ ©VENLSeeivieriieriieriierieieerieseestesstessesssesseesseesssesssesssesssesssesssssssesssesssesssesssesssesssenses 11
[Ankr bas-8] Poorly designed claim fUNCHONc.cocuieiiiiiiieiiee et 12
3 Appendix 13
3.1 Vulnerability Assessment Metrics and Status in Smart CONtractscceveveveervereerieesieesieeseeseeseens 13
3.2 AUAIE CALEGOTICS -.uveeuveeureeutieteeie et et ete e bt et e te e teeteeabe e bt enseenseanseenseenseenseenseenseenseeaseenseenseenseenseenseenne 15
3.3 Disclaimer SO B b C VST BT e RO B C RS LI e ST 17

3.4 ABOUE BEOSIN ...ttt sttt ettt sttt be st 18

Ankr bas Security Audit

Summary of audit results

After auditing, 1 Critical-risk, 1 High-risk, 1 Medium-risk and S Info items were identified in the Ankr
bas project. Specific audit details will be presented in the Findings section. Users should pay attention to the

following aspects when interacting with this project:

Security vulnerability

1 1 1
1
]] :]
0
Critical High Medium Low Info

M Critical M High ¥ Medium B Low & Info

“Notes:

® Risk Description:

1. If contract use the latest openzeppelin-contracts, there may be previous problems. Because the Governor
in the latest openzeppelin-contracts contract has added a castVote, it will cause the vote to still be

manipulated. Please make sure to use the correct openzeppelin version.
® Project Description:
1. Business overview

The Staking contract implements the Validator registration function and the user stake function. Anyone
can register as a Validator by pledging the corresponding funds through the Staking contract, and after
registration, the Validator can only become a Validator if the Governance contract is voted on. The
Governance contract can be initiated by the Validator address and must have more than two-thirds of the
votes before the proposal can succeed; the RuntimeUpgrade contract is used to upgrade the system

contract.

Ankr bas Security Audit

1 Overview

1.1 Project Overview

Project Name Ankr bas
Platform Ankr Chain
Github https://github.com/Ankr-network/bas-genesis-config

c40a8d82bf485365¢ca3296be598c28886f18b64 (first)
a2619e10ba6149947d20d64d7608b4d3750ee968(latest)

Commit

466e8bf3e88fb71828bb89tb2b7c21cdedca6d042215a8daaldffable51
2a6¢8(Unfixed)

ad2fdf8565190b1b9972fe91fa6fa4e044c7f783a5b0423381663f6330d
2083(Fixed)

Staking.sol

1eca905566e42760e6cedcb0e0d9d6ad35e¢94b3f1d5dd8a857afelcl

StakingPool.sol 4cef70bd

File Hash Iniector.sol 37a7d2351fa0e9e42907231de3a54651be952¢c045¢45562e846¢eblb
(SHA256) jector. 2787902bf

5b9e85557561¢1895¢55b1alb60d8b15112b1{e98641f18c7d9db5c

RuntimeUpgrade.sol 0dab2050f

5¢76fc9e0b25d805bc0045a3ecbde8da89b577a243886d99f35a4¢86
37b3e234(Unfixed)

2caf68fedf5e6ead15f496a8d06dc5¢63f003e7bcb8672dd497¢55745
550e497(Fixed)

Governance.sol

1.2 Audit Overview

Audit work duration: April 13, 2022 — April 21, 2022
Update report time: April 26, 2022
Audit methods: Formal Verification, Static Analysis, Typical Case Testing and Manual Review.

Audit team: Beosin Technology Co. Ltd.

2 Findings

Ankr bas Security Audit

Index Risk description Severity level Status
Ankr bas-1 A validator can vote multiple times Critical Fixed
Ankr bas-2 Poorly designed ctor function High Fixed
Ankr bas-3 User funds will not be available for withdrawal Low Fixed
Ankr bas-4 The slashValidator function is not rigorously judged Info Partially Fixed
Ankr bas-5 Poorly designed undelegate function Info Fixed
Ankr bas-6 Poorly designed _delegateTo function Info Acknowledged
Ankr bas-7 Missing events Info Fixed
Ankr bas-8 Poorly designed claim function Info Fixed

Risk Details Description:

1. Ankr bas-4 is not fully fixed but does not cause security issues.

2. Ankr bas-6 is not fixed but does not cause security issues.

Ankr bas Security Audit

[Ankr bas-1] A validator can vote multiple times

Severity Level

Critical

Type Business Security

Lines Governance.sol#

Description In the Governance contract, only the ValidatorOwner address can vote, but in the
Staking contract, the ValidatorOwner address can be modified through the
changeValidatorOwner function, and then you can still vote.

Recommendations It is recommended to use validator to count the votes.

Status Fixed.

68

69~ function _castVote(uint256 proposalld, address account, uints support, string memory reason) internal virtual override onlyValidatorOwner(account) returns (uint2s6) {
78 address validatorAddress - _stakingContract.getValidatorByOuner (account);

7 return super._castVote(proposalld, validatorAddress, support, reason);

72 3}

73

Figure 1 Source code of _castVote function (Fixed)

Ankr bas Security Audit

[Ankr bas-2] Poorly designed ctor function

Severity Level High

Type Business Security

Lines Staking.sol#L122

Description The ctor function in the staking contract should not specify initialStakes, because this
function does not transfer the corresponding funds. If the validator has other users
participating in the stake, it will cause the validator to withdraw the stake funds of

other users.

118
119 function ctor(address[] calldata validators, uint256[] calldata uint16 commissionRate) external whenNotInitialized {
120 require(initialStakes.length == validators.length);
121 for (uint256 i = @; i < validators.length; iss) {
122 _addValidator(validators[i], validators[i], ValidatorStatus.Active, commissionRate,
123 }
124 }
125
Figure 2 Source code of ctor function (Unfixed)
485
486 function _addvalidator(address validatorAddress, address validatorOuner, ValidatorStatus status, uintlé commissionRate, uint2s int64 sinceEpoch) internal {
487 // validator commission rate
488 require(commissionRate >= COMMISSION_RATE_MIN_VALUE & commissionRate <= COMMISSION_RATE_MAX_VALUE, “Staking: bad commission rate”);
489 // init validator default params
490 validator memory validator - _validatorshap[validatoraddress];
401 require(_validatorstiap[validatorAddress] .status == ValidatorStatus.NotFound, "Staking: validator already exist");
192 validator.validatorAddress - validatorAddress;
493 validator.omneraddress = validatorOuner;
492 validator.status = status;
405 validator.changedAt = sinceEpoch;
496 _validatorsmap[validatoraddress] = validator;
497 // save validator owner
4908 require(_validatorouners[validatorOuner] == address(0xe0), "Staking: owner already in use");
499 _validatorOuners[validatorOuner] = validatoraddress;
se0 // add new validator to array
501 if (status == ValidatorStatus.Active) {
502 _activeValidatorsList.push(validatoraddress);
se3 }
se4 /1 push initial validator snapshot at zero epoch with default params
505 _validatorSnapshots[validatorAddress][sinceEpoch] = ValidatorSnapshot(®, uint112(initialStake / BALANCE_COMPACT_PRECISION), @, commissionRate);
506 // delegate initial stake to validator owner
507 ValidatorDelegation storage delegation - _validatorDelegations[validatorAddress][validatorguner];
508 require(delegation. delegateQueue.length = ©, "Staking: delegation queue is not empty”);
509 ‘delegatiur\.delegatequeue.push(Delegat)uno;Delsgate(uintﬂu(init)alstake / BALANCE_COMPACT_PRECISION), sinteEpa(h));‘
510 77 enit event
511 enit Validatoradded(validatorAddress, validatorOuner, uintg(status), commissionRate);
512 b
513

Figure 3 Source code of _addValidator function

Recommendations It is recommended to set initialStakes to zero.

Status Fixed.

118

119 function ctor(address[] calldata validators, uint256[] calldata initialStakes, uint16 commissionRate) external whenNotInitialized {
120 require(initialStakes.length —= validators.length);

121 uint256 totalStakes = 8;

122 for (uint256 i = 8; i < validators.length; i++) {

123 _addvalidator(validators[i], validators[i], VvalidatorStatus.Active, commissionRate, initialstakes[i], e);
124 totalStakes += initialStakes[i];

125 }

126 require(address(this).balance == totalStakes, "Staking: initial stake balance mismatch");

127 3}

192

Figure 4 Source code of ctor function (Fixed)

Ankr bas Security Audit

[Ankr bas-3] User funds will not be available for withdrawal

Severity Level

Low

Type

Business Security

Lines

Staking.sol#L.313, 535-544

Description

After the validator is deleted through governance, if the validator has stake funds, the

user will not be able to withdraw the funds staked on the validator.

513
514 function removeValidator(address account) external onlyFromGovernance virtual override {
515 _removevalidater(account);
516 3}
517
518 function _removeValidatorFromActivelist(address validatorAddress) internal {
519 // find index of validator in validator set
528 int256 indexof = - 1;
521 for (uint2s6 i = @; i < _activevalidatorsiList.length; i++) {
522 if (_activeValidatorslist[i] != validatorAddress) continue;
523 indexOf = int256(i);
524 break;
525 1
526 // remove validator from array (since we remove only active it might not exist in the 1ist)
527 if (indexOf >= @) {
528 if (_activeValidatorsList.length > 1 &% uint256{indexCf) !- _activeValidatorslList.length - 1) {
529 _activeValidatorsList[uint256(index0f)] = _activeValidatorsList[_activeValidatorsList.length - 1];
530 3
531 _activevalidatorsList.pop();
532 }
533 3}
534
535 function _removeValidator(address account) internal {
536 Validator memory validator = _validatorsMap[account];
537 require(validator.status != validatorStatus.NotFound, "Staking: validator not found”);
538 // remove validator from active list if exists
539 _removeValidatorFromActivelist(account);
54 // remove from validators map
541 delete _validatorOuners[validator.ownerAddress];
542 [delete _validatorsmap[account]; |
543 // emit event about it
544 emit ValidatorRemoved(account);
545 }
546
306
307 v function _undelegateFrom(address toDelegator, address fromvalidator, uint256 amount) internal {
308 // check minimun delegate amount
209 require(anount >= _chainConfigContract. getHinStakingAnount() && amount 1= @, "Staking: amount is too low™);
310 require (anount % BALANCE_COMPACT_PRECISION == @, "Staking: amount have a remainder");
31 // make sure validator exists at least
312 Validator memory validator = _validatorshap[fronvalidator];
213 require(validator. status |- Validatorstatus.NotFound, "Staking: validator not found");
318 iS4 beforeEpUTh = TERtEpUTt) T
215 /1 Lets upgrade next snapshot parameters
316 // + ¥ind snapshot for the next epoch after current block
317 /1 + increase total delegated amount in the next epoch for this validator
318 /1 + re-save validator because last affected epoch might change
319 vali pshot storage vali pshot = _touchvalidatorsnapshot(validator, o
320 require (validatorSnapshot . totalDelegated >= uint112(amount / BALANCE_COMPACT_PRECISION), "Staking: insufficient balance);
Pl validatorsnapshot. totalDelegated - uint112(amount / BALANCE_COMPACT_PRECISION);
322 _validatorshap[fronvalidator] = validator;
223 7/ if last pending delegate has the same next epoch then its safe to just increase total
320 /1 staked amount because it cant affect current validator set, but otherwise we must create
325 /1 new record in delegation queue with the last epoch (delegations are ordered by epoch)
326 Validatorbelegation storage delegation = _validatorDelegations[fromvalidator][toDelegator];
327 require (delegation.delegateQueue.length > @, “Staking: delegation queue is empty™
328 DelegationOpDelegate storage recentDelegateOp - delegation.del delegation.delegateQueue. length - 1];
320 require(recentDelegateOp.amount >= uinte4(amount / BALANCE_COMPACT PRECISION), "Staking: insufficient balance”);
EE) UInt112 nextDelegatedAmount = recentbelegateOp.amount - uintil2(amount / BALANCE_COMPACT_PRECISION);
331 v if (recentDelegate0p.epoch >= beforeEpoch) {
332 /] decrease total delegated amount for the next epoch
333 recentDelegatep. anount = nextbelegatedAnount;
336 v } else {
335 // there is no pending delegations, so lets create the new one with the new amount
336 delegation.delegateQueue. push(DelegationopDelegate({epoch : beforeEpoch, amount : nextDelegatedAmount}));
237 3
338 // create new undelegate queue operation with soft lock
339 delegation. undelegateQueue. push(Del egationOpUndelegate({anount : uint112(amount / BALANCE_COMPACT_PRECISION), epoch : beforeEpoch + _chainConfigContract.getUndelegatePeriod()}));
340 // enit event with the next epoch number
341 enit Undel d(Fromvalidator, , amount, beforeEpoch);
382 ¥
343

Figure 6 Source code of undelegateFrom function (Unfixed)

Recommendations

It is recommended to remove the validator after the funds in the validator have been

withdrawn.

Ankr bas Security Audit

Status Fixed.

310
311 v function _undelegatefrom(address toDelegator, address fromvalidator, uint256 amount) internal {

312 /1 check minimun delegate amount

313 require(amount >= _chainConfigContract. getiinStakingamount() & amount != @, "Staking: amount is too low");

314 require(amount % BALANCE_COMPACT_PRECISION == 6, “Staking: amount have a remainder™);

315 /1 make sure validator exists at least

316 Validator memory validator = _validatorsMap[fromvalidator];

317 uinte4 beforeEpoch - _nextEpoch();

318 // lets upgrade next snapshot parameters:

319 /1 + find snapshot for the next epoch after current block

320 /I + increase total delegated amount in the next epoch for this validator

P /1 + re-save validator because last affected epoch might change

Er7) Validatorsnapshot storage vali b _touchvali pshot (va r, poch);

323 require(validatorSnapshot .totalDelegated >= uint112(amount / BALANCE_COMPACT PRECISION), "Staking: insufficient balance”);
324 validatorsnapshot. totalDelegated -= uint112(amount / BALANCE_COMPACT_PRECISION);

325 _validatorsiap fromvalidator] = validator;

326 // if last pending delegate has the same next epoch then its safe to just increase total

327 /1 staked amount because it can't affect current validator set, but otherwise we must create

328 /1 new record in delegation queue with the last epoch (delegations are ordered by epoch)

320 ValidatorDelegation storage delegation = _vali fons[- idator][

330 require(delegation.delegateQueue.length > 6, "Staking: delegation queue is empty

331 Delegati te storage rec gatep - delegation.del i Length - 11;
332 require(recentDelegateOp. amount > uint64(amount / BALANCE_COMPACT_PRECISTON), "Staking: insufficient balance™);
333 uint112 nextbelegatedAmount = recentDelegateOp.amount - uintll2(amount / BALANCE_COMPACT_PRECISION);

334 v if (recentDelegateOp.epoch >= beforeEpoch) {

335 // decrease total delegated amount for the next epoch

336 rec mount 5

337 v } else {

338 1/ there is no pending delegations, so lets create the new one with the new amount

339 delegation.del h(Delegati e({epoch : poch, amount : Ns
340 }

341 /1 create new undelegate queue operation with soft lock

342 delegation. undelegateQueue. push(DelegationOpUndelegate({amount : uint112(amount / BALANCE_COMPACT_PRECISION), epoch : beforeEpoch + _chainConfigContract.getUndelegateperiod()})
343 /1 emit event with the next epoch number

248 emit Und idator, , amount, poch);

245 }

346

Figure 7 Source code of _undelegateFrom function (Fixed)

Ankr bas Security Audit

[Ankr bas-4] The _slashValidator function is not rigorously judged

Severity Level Info

Type Business Security

Lines Staking.sol#L.741,743

In the slashValidator function, "validator.status != ValidatorStatus.NotFound" is judged,

Description
because "make sure validator was active" is also written in the comment. So the function here

should judge validator.status == ValidatorStatus.Active.

VEE

740 ~ function _slashvalidator(address validaterAddress) internal {

741 Pf make sure validator was active

742 Validator memory validator = validatorsMap[validatorAddress]:

743 | require(validator.status != ValidatorStatus.NotFound, "Staking: validator not found");
744 uinted epoch = _currentEpoch();

745 // increase slashes for current epoch

746 ValidatorSnapshot storage currentSnapshot = _touchValidatorSnapshot(validator, epoch)
747 uint32 slashesCount = currentSnapshot.slashesCount + 13

743 currentSnapshot. slashesCount = slashesCount;

749 // validator state might change, lets update it

758 _wvalidatorsMap[validatoraddress] = validator;

751 /[if validator has a lot of misses then put it in jail for 1 week (if epoch is 1 day)
752 if (slashesCount == _chainConfigContract.getFelonyThreshold()) {

753 validator.jailedBefore = currentEpoch() + _chainConfigContract.getvalidatorJailEpochLength();
754 validator.status = ValidatorStatus.Jail;

755 _removeValidatorFromActiveList(validatoraddress);

756 _validatorsMap[validatoraddress] = validator;

757 emit Validatordailed(validatorAddress, epoch);

758 }

759 /[emit event

760 emit WalidatorSlashed(validatorAddress, slashesCount, epoch);

761 ¥

762}

763

Figure 8 Source code of _slashValidator function (Unfixed)

Recommendations It is recommended to determine the status of the validator as active.

Status Partially Fixed. Project party description: Validator can be slashed even if this validator is
already in jail because epoch might be still active where this validator is in the active validator

set. They’ve changed the misleading comment for this line.

IZE]

741 function _slashValidator(address validatorAddress) internal {

742 // make sure validator exists

743 validator memory validator = _validatorsMap[validatorAddress];

744 require(validator.status != ValidatorStatus.NotFound, "Staking: validator not found");
745 uinté4 epoch = _currentEpoch();

746 // increase slashes for current epoch

747 validatorSnapshot storage currentSnapshot = _touchValidatorSnapshot(validator, epoch);
748 uint32 slashesCount = currentSnapshot.slashesCount + 1;

749 currentSnapshot.slashesCount = slashesCount;

750 // validator state might change, lets update it

751 _validatorsMap[validatoraddress] = validator;

752 // if validator has a lot of misses then put it in jail for 1 week (if epoch is 1 day)
753 if (slashesCount == _chainConfigContract.getFelonyThreshold()) {

754 validator.jailedBefore = _currentEpoch() + _chainConfigContract.getValidatorJailEpochLength();
755 validator.status = ValidatorStatus.Jail;

756 _removeValidatorFromActivelist(validatorAddress);

757 _validatorsMap[validatorAddress] = validator;

758 emit Validatorlailed(validatorAddress, epoch);

750 1

768 /f emit event

761 emit ValidatorSlashed(validatorAddress, slashesCount, epoch);

762 3

763}

Figure 9 Source code of _slashValidator function (Partially Fixed)

N Ankr bas Security Audit

[Ankr bas-5] Poorly designed undelegate function

Severity Level Info

Type Business Security

Lines Staking.sol#L.216

. In th function, there is n ration on msg.value.

Description the undelegate function, there is no operation on msg.value
Las i
215
216 ~ function undelegate(address validatorAddress, uint256 amount} external override {
217 _undelegateFrom({msg.sender, validatorAddress, amount);
218 1
219

Figure 10 Source code of undelegate function (Unfixed)

Recommendations It is recommended to delete the payable.

Status Fixed.

215

216 function undelegate(address validatorAddress, uint256 amount) external override {
217 _undelegateFrom{msg.sender, validatorAddress, amount);

218 T

219

Figure 11 Source code of undelegate function (Fixed)

Ankr bas Security Audit

[Ankr bas-6] Poorly designed delegateTo function

Severity Level Info

Type Business Security

Lines Staking.sol#L.277

: : T E T -
Description In the delegateTo function of StakingPool, it is judged as "validator.status !
ValidatorStatus.NotFound", which means that when the validator's status is Pending

or Jail, users can also stake.

278 ~ function _delegateTo(address frombelegator, address toValidator, uint2s6 amount) internal ff
271 /1 check is minimum delegate amount

272 require(amount >= _chainConfigContract.getiinstakingAmount () & amount 1= @, "Staking: amount is too low");
273 require(amount % BALANCE_COMPACT_PRECISION == @, "Staking: amount have a remainder");

278 // make sure amount is greater than min staking amount

275 /1 make sure validator exists at least

276 validator memory validator = _validatorsMap[tovalidator];

277 [require(validator.status != validatorStatus.NotFound, "Staking: validator not found”)]
278 uint64 atEpoch = _nextEpoch();

279 // Lets upgrade next snapshot parameters

280 /f + find snapshot for the next epoch after current block

281 /1 + increase total delegated amount in the next epoch for this validator

282 // + re-save validator because last affected epoch might change

283 ValidatorSnapshot storage validatorSnapshot = _touchValidatorSnapshot(validator, atEpoch);
284 validatorSnapshot. totalDelegated += uint112(amount / BALANCE_COMPACT_PRECISION);

285 _validatorshap[toValidator] = validator;

286 // if last pending delegate has the same next epoch then its safe to just increase total

287 /1 staked amount because it can't affect current validator set, but otherwise we must create

288 /7 new record in delegation queue with the last epach (delegations are ordered by epach)

289 ValidatorDelegation storage delegation - _validatorDelegations[toValidator][fromDelegator];

290 if (delegation.delegateQueue,length > 8) {

201 DelegationOpDelegate storage recentDelegateOp - delegation.delegateQueue[delegation.delegateQueue.length - 1];

202 /I if we already have pending snapshot for the next epoch then just increase new amount,

203 /7 otherwise create next pending snapshot. (tbh it can't be greater, but what we can do here instead?)

204 ~ if (recentDelegateOp.epoch »= atEpoch) {

205 recentDelegateOp. amount += uintli2(amount / BALANCE_COMPACT_PRECISION);

206 ~ } else {

207 delegation.delegateQueue.push(DelegationOpbelegate({epoch : atEpoch, amount : recentDelegateOp.amount + uintll2(amount / BALANCE_COMPACT_PRECISION)}));
208 }

200 } else {

300 // there is no any delegations at al, lets create the first one

301 delegation.delegateQueue. push(DelegationopDelegate({epoch : atEpoch, amount : uintll2(amount / BALANCE COMPACT_PRECISION)}));
302 }

ELE] // emit event with the next epach

ELTS emit Delegated(tovalidator, fromDelegator, amount, atkpoch);|

205 B

Figure 12 Source code of preMint function (Unfixed)

Recommendations It is recommended that when the state of the Validator is active before it can be

staked.

Status Acknowledged. Project party description: They can’t limit validators from being elected even
if they are in jail or not active. Stakers who delegate money to jailed or inactive validators will
be punished because they won’t gain any rewards for it. But the validator owner might want to
increase the total staked amount for his validator just to increase its position in the active

validator list and be prepared for validating blocks right after the jail period ends.

10

Ankr bas Security Audit

[Ankr bas-7] Missing events

Severity Level Info

Type Business Security

Lines Staking.sol#L551-569

Description The disableValidator and _activateValidator functions in the Staking contract lack

the corresponding event triggers,

551 v function _activateValidator(address validatorAddress) internal {

552 Validator memory validator = _validatorsMap[validatorAddress];

553 require(_validatorsMap[validatorAddress].status == ValidatorStatus.Pending, "Staking: not pending validator™);
554 _activevalidatorsList.push(validatorAddress);

555 validator.status = ValidatorStatus.Active;

556 _validatorsMap[validatorAddress] = validator;

557 ¥

558

559 function disableValidator(address validator) external enlyFromGovernance virtual override {

568 _disablevalidator(validator);

561 }

562

563 function _disableValidator(address validatorAddress) internal {

564 Validator memory validator = _validatorsMap[validatorAddress];

565 require(_validatorsMap[validatoraddress].status validatorStatus.Active, "Staking: not active validator");
566 _removeValidatorFromActivelist(validatorAddress);

567 validator.status = validatorStatus.Pending;

568 _validatorsMap[validatorAddress] = validator;

569 1

Figure 13 Source code of _disableValidator& activateValidator functions (Unfixed)

Recommendations It is recommended to add their event triggers.

Status Fixed.

551 function _activatevalidator(address validatorAddress) internal {

552 validator memory validator = _validatorsMap[validatorAddress];

553 require(_validatorsMap[validatorAddress].status == ValidatorStatus.Pending, "Staking: not pending validator™);
554 _activeValidatorsList.push(validatorAddress);

555 validator.status = ValidatorStatus.Active;

556 _validatorsMap[validatorAddress] - validator;

557 ValidatorSnapshot storage snapshot = _touchValidatorSnapshot(validator, _nextEpoch());

558 emit ValidatorModified(validatorAddress, validator.ownerAddress, uint8(validator.status), snapshot.commissionRate);
550 3}

560

561 v function disableValidator(address validator) external onlyFromGovernance virtual override {

562 _disablevalidator(validator);

563 3}

564

565 W function _disablevalidator(address validatorAddress) internal {

566 validator memory validator = _validatorsMap[validatoraddress];

567 require(_validatorsMap[validatorAddress].status == validatorStatus.Active, "Staking: not active validator™);
568 _removevalidatorFromActivelist (validatorAddress);

569 validator.status = ValidaterStatus.Pending;

578 _validatorsMap[validatoraAddress] = validator;

571 validatorSnapshot storage snapshot = _touchvalidatorSnapshot(validator, _nextEpoch());

572 emit ValidatorModified(validatorAddress, validator. , uint8(validator.status), snapshot.commissionRate);
573 }

Figure 14 Source code of _disableValidator& _activateValidator functions (Fixed)

11

Ankr bas Security Audit

[Ankr bas-8] Poorly designed claim function

Severity Level Info

Type Business Security

Lines StakingPool.sol#1.166

Description When the user does not cancel the stake, the pendingUnstake.epoch at this time is

equal to zero, then the use of greater than or equal to zero here is constant.

1ok
161 function claim(address validator) external advanceStakingRewards(validator) override {
162 PendingUnstake memory pendingUnstake = _pendingUnstakes[validator][msg.sender];
163 uint256 amount = pendingUnstake.amount;

164 uint256 shares = pendingUnstake.shares;

165 // make sure user have pending unstake

166 |r‘equire(pendingUnstake.epoch »= B, "StakingPool: nothing to claim");

167 require(pendingUnstake.epoch <= _stakingContract.currentEpoch(), "StakingPool: not ready");
168 // updates shares and validator pool params

169 _stakerShares[validator][msg.sender] -= shares;

17e ValidatorPool memory validatorPool = _getValidatorPool(validator);

171 validatorPool.sharesSupply -= shares;

172 validatorPool.totalStakedamount -= amount;

173 validatorPool.pendingUnstake -= amount;

174 _validatorPools[validator] = validatorPool;

175 // remove pending claim

176 delete _pendingUnstakes[validator][msg.sender];

177 // its safe to use call here (state is clear)

178 require({address(this).balance >= amount, "StakingPool: not enough balance");

179 payable(address(msg.sender)).transfer(amount);

180 // emit event

181 emit Claim(validator, msg.sender, amount);

182 1

103

Figure 15 Source code of claim function (Unfixed)

Recommendations It is recommended to modify it to be greater than zero.

Status Fixed.
161 function claim(address validator) external advanceStakingRewards(validator) override {
162 PendingUnstake memory pendingUnstake = _pendingUnstakes[validator][msg.sender];
163 uint256 amount = pendingUnstake.amount;
164 uint256 shares = pendingUnstake.shares;
165 [/ make sure user have pending unstake
166 require(pendingUnstake.epoch > @, "StakingPool: nothing to claim");
167 require(pendingUnstake.epoch <= _stakingContract.currentEpoch(}, "StakingPool: not ready");
168 // updates shares and validator pool params
169 _stakerShares[validator][msg.sender] -= shares;
17@ ValidatorPool memory validatorPool = _getValidatorPool(validator);
171 validatorPool.sharesSupply -= shares;
172 validatorPool.totalStakedAmount -= amount;
173 validatorPool.pendingUnstake -- amount;
174 _validatorPools[validator] = validatorPool;
175 // remove pending claim
176 delete _pendingUnstakes[validator][msg.sender];
177 [/ its safe to use call here (state is clear)
178 require(address(this).balance »= amount, "StakingPool: not encugh balance");
179 payable(address(msg.sender)).transfer(amount);
180 // emit event
181 emit Claim(validator, msg.sender, amount);
182 3}
183
184 receive() externzl payable {
185 require(address(msg.sender) == address(_stakingContract));
186 3}
187 }

Figure 16 Source code of claim function (Fixed)

12

Ankr bas Security Audit ‘

£

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report
provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:
"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of
exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

LikelihOO(IimpaCt Severe High Medium Low
Probable Critical High Low
Possible High High Low
Unlikely Low Info
Rare Low Low Info Info
3.1.2 Degree of impact

® Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,
integrity, availability of smart contracts or their economic model, which can cause substantial
economic losses to the contract business system, large-scale data disruption, loss of authority
management, failure of key functions, loss of credibility, or indirectly affect the operation of other
smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.
® High

High impact generally refers to the vulnerability can have a relatively serious impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

13

Ankr bas Security Audit ‘

y

® Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the
confidentiality, integrity, availability of the smart contract or its economic model, which can cause a
small amount of economic loss to the contract business system, individual business unavailability

and other impact.
® Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract,

which can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

® Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.
® Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.
® Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.
® Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the

conditions for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the issue.

Acknowledged The project party confirms and chooses to ignore the issue.

14

Ankr bas Security Audit

3.2 Audit Categories

No. Categories Subitems

Compiler Version Security

Deprecated Items

1 Coding Conventions Redundant Code

require/assert Usage

Gas Consumption

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

2 General Vulnerability
call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party protocol interface consistency

Business Logics

Business Implementations

Manipulable token price

3 Business Security
Centralized asset control

Asset tradability

Arbitrage attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions, General
Vulnerability, Business Security. Their specific definitions are as follows:

® Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,
smart contracts developed in Solidity language should fix the compiler version and do not use
deprecated keywords.

® General Vulnerability

15

Ankr bas Security Audit

General Vulnerability include some common vulnerabilities that may appear in smart contract
projects. These vulnerabilities are mainly related to the characteristics of the smart contract itself,
such as integer overflow/underflow and denial of service attacks.

® Business Security

Business security is mainly related to some issues related to the business realized by each project,
and has a relatively strong pertinence. For example, whether the lock-up plan in the code match the

white paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something Beosin can control.

Business security requires the participation of the project party. The project party and users need to stay vigilant at all times.

16

Ankr bas Security Audit ‘

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement. The
Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used within the
conditions and scope agreed in the service agreement. Other third parties shall not transmit, disclose, quote,

rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or wording
contained therein shall not be interpreted as affirmation or confirmation of the project, nor shall any warranty
or guarantee be given as to the absolute flawlessness of the code analyzed, the code team, the business model

or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the technology
currently available to Beosin. However, due to the technical limitations of any organization, and in the event
that the code provided by the Served Party is missing information, tampered with, deleted, hidden or

subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be
utilized as investment suggestions of any type. This report represents an extensive evaluation process designed

to help our customers improve code quality while mitigating the high risks in Blockchain.

17

Ankr bas Security Audit

3.4 About BEOSIN

Affiliated to BEOSIN Technology Pte. Ltd., BEOSIN is the first institution in the world specializing in the
construction of blockchain security ecosystem. The core team members are all professors, postdocs, PhDs, and
Internet elites from world-renowned academic institutions.BEOSIN has more than 20 years of research in
formal verification technology, trusted computing, mobile security and kernel security, with overseas
experience in studying and collaborating in project research at well-known universities. Through the security
audit and defense deployment of more than 2,000 smart contracts, over 50 public blockchains and wallets, and
nearly 100 exchanges worldwide, BEOSIN has accumulated rich experience in security attack and defense of

the blockchain field, and has developed several security products specifically for blockchain.

18

@5 BEOSIN

Blockchain Security

Official Website
https://www.beosin.com

Telegram

https://t.me/+dD8Bnqd 133RmNWNI
Twitter
https://twitter.com/Beosin_com
Email

Contact(@beosin.com

	Summary of audit results
	1 Overview
	1.1 Project Overview
	1.2 Audit Overview

	2 Findings
	[Ankr bas-1] A validator can vote multiple times
	[Ankr bas-2] Poorly designed ctor function
	[Ankr bas-3] User funds will not be available for
	[Ankr bas-4] The _slashValidator function is not r
	[Ankr bas-5] Poorly designed undelegate function
	[Ankr bas-6] Poorly designed _delegateTo function
	[Ankr bas-7] Missing events
	[Ankr bas-8] Poorly designed claim function

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About BEOSIN

